Skip to main content
Log in

Influence of ash composition on the sintering behavior during pressurized combustion and gasification process

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

To determine the ash characteristics during fluidized bed combustion and gasification purposes, the investigation of the impacts of chemical composition of Jincheng coal ash on the sintering temperature was conducted. A series of experiments on the sintering behavior at 0.5 MPa was performed using the pressurized pressure-drop technique in the combustion and gasification atmospheres. Meanwhile, the mineral transformations of sintered ash pellets were observed using X-ray diffractometer (XRD) analyzer to better understand the experimental results. In addition, quantitative XRD and field emission scanning electron microscope/energy dispersive X-ray spectrometer (FE-SEM/EDS) analyses of ash samples were used for clarifying the detailed ash melting mechanism. These results show that the addition of Fe2O3 can obviously reduce the sintering temperatures under gasification atmospheres, and only affect a little the sintering temperature under combustion atmosphere. This may be due to the presence of iron-bearing minerals, which will react with other ash compositions to produce low-melting-point eutectics. The FE-SEM/EDS analyses of ash samples with Fe2O3 additive show consistent results with the XRD measurements. The CaO and Na2O can reduce the sintering temperatures under both the combustion and gasification atmospheres. This can be also contributed to the formation of low-melting-point eutectics, decreasing the sintering temperature. Moreover, the fluxing minerals, such as magnetite, anhydrite, muscovite, albite and nepheline, contribute mostly to the reduction of the sintering temperature while the feldspar minerals, such as anorthite, gehlenite and sanidine, can react with other minerals to produce low-melting-point eutectics, and thereby reduce the sintering temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Otoom, A.Y., Bryant, G.W., Elliott, L.K., Skrifvars, B.J., Hupa, M., Wall, T.F., 2000a. Experimental options for determining the temperature for the onset of sintering of coal ash. Energy & Fuels, 14(1):227–233. [doi:10.1021/ef990196s]

    Article  Google Scholar 

  • Al-Otoom, A.Y., Elliott, L.K., Wall, T.F., Moghtaderi, B., 2000b. Measurement of the sintering kinetics of coal ash. Energy & Fuels, 14(5):994–1001. [doi:10.1021/ef0000126]

    Article  Google Scholar 

  • Brooker, D.D., Oh, M.S., 1995. Iron sulfide deposition during coal gasification. Fuel Processing Technology, 44(1–3): 181–190. [doi:10.1016/0378-3820(95)00011-U]

    Article  Google Scholar 

  • Bryant, G.W., Lucas, J.A., Gupta, S.K., Wall, T.F., 1998. Use of thermomechanical analysis to quantify the flux additions necessary for slag flow in slagging gasifiers fired with coal. Energy & Fuels, 12(2):257–261. [doi:10.1021/ef9700846]

    Article  Google Scholar 

  • Cen, K.F., Fan, J.R., Chi, Z.H., 1994. Mechanisms and Calculations for Preventing Boilers and Heat Exchangers from Depositing, Slagging, Wearing and Eroding. Science Press, Beijing, China (in Chinese).

    Google Scholar 

  • Dawes, S.G., Gibbs, G.B., Highley, H., 1988. The British coal/CEGB project on pressurised fluidised bed combustion. Journal of Institute of Energy, 17:17–26.

    Google Scholar 

  • Delvinquier, V., Fatah, N., Pietrzyk, S., Dauphin, J., Berte, P., Bruyet, B., 1995. Defluidisation at High Temperature in Fluidised Bed of Sand by Addition of Calcium Carbonate. Fluidised Bed Combustion, Heinschel, K.J. (Ed.), ASME, New York, 2:801–806.

    Google Scholar 

  • Gupta, S.K., Gupta, R.P., Bryant, G.W., Wall, T.F., 1998. The effect of potassium on the fusibility of coal ashes with high silica and alumina levels. Fuel, 77(11):1195–1201. [doi:10.1016/S0016-2361(98)00016-7]

    Article  Google Scholar 

  • Ishom, F., Harada, T., Aoyagi, T., Sakanishi, K., Korai, Y., 2002. Problem in PFBC boiler (1): characterization of agglomerate recovered in commercial PFBC boiler. Fuel, 81(11–12):1146–1148. [doi:10.1016/S0016-2361(02)00066-2]

    Google Scholar 

  • Jing, N.J., Wang, Q.H., Luo, Z.Y., Cen, K.F., 2012. Effect of the chemical composition on the sintering behavior of Jincheng coal ash under the gasification atmosphere. Chemical Engineering Communications, 199(2):189–202. [doi:10.1039/c1cc12040a]

    Article  Google Scholar 

  • Li, J.B., Shen, B.X., Li, H.X., Zhao, J.G., Wang, J.M., 2009. Effect of ferrum-based flux on the melting characteristics of coal ash from coal blends using the Liu-qiao No. 2 Coal Mine in Wan-bei. Journal of Fuel Chemistry and Technology, 37(3):262–265. [doi:10.1016/S1872-5813(09)60020-7]

    Article  Google Scholar 

  • Li, W.D., Li, M., Li, W.F., Liu, H.F., 2010. Study on the ash fusion temperatures of coal and sewage sludge mixtures. Fuel, 89:1566–1572. [doi:10.1016/j.fuel.2009.06.031]

    Article  Google Scholar 

  • Lolja, S.A., Haxhi, H., Dhimitri, R., Drushku, S., Malja, A., 2002. Correlation between ash fusion temperatures and chemical composition in Albanian coal ashes. Fuel, 81(17):2257–2261. [doi:10.1016/S0016-2361(02)00194-1]

    Article  Google Scholar 

  • McLennan, A.R., Bryant, G.W., Stanmore, B.R., Wall, T.F., 2000. Ash formation mechanisms during pf combustion in reducing conditions. Energy & Fuels, 14(1):150–159. [doi:10.1021/ef990095u]

    Article  Google Scholar 

  • Ninomiya, Y., Sato, A., 1997. Ash melting behavior under coal gasification conditions. Energy Conversion and Management, 38(10–13):1405–1412. [doi:10.1016/S0196-8904(96)00170-7]

    Article  Google Scholar 

  • Seggiani, M., 1999. Empirical correlations of the ash fusion temperatures and temperature of critical viscosity for coal and biomass ashes. Fuel, 78(9):1121–1125. [doi:10.1016/S0016-2361(99)00031-9]

    Article  Google Scholar 

  • Sheng, C.D., Li, Y., 2008. Experimental study of ash formation during pulverized coal combustion in O2/CO2 mixtures. Fuel, 87(7):1297–1305. [doi:10.1016/j.fuel.2007.07.023]

    Article  Google Scholar 

  • Skrifvars, B.J., Hupa, M., HiItunen, M., 1992. Sintering of ash during fluidized bed combustion. Industrial & Engineering Chemistry Research, 31(4):1026–1030. [doi:10.1021/ie00004a008]

    Article  Google Scholar 

  • Skrifvars, B.J., Hupa, M., Backman, R., HiItunen, M., 1994. Sintering mechanisms of FBC ashes. Fuel, 73(2):171–176. [doi:10.1016/0016-2361(94)90110-4]

    Article  Google Scholar 

  • Song, W.J., Tang, L.H., Zhu, X.D., Wu, Y.Q., Rong, Y.Q., Zhu, Z.B., Koyama, S., 2009a. Fusibility and flow properties of coal ash and slag. Fuel, 88(2):297–304. [doi:10.1016/j.fuel.2008.09.015]

    Article  Google Scholar 

  • Song, W.J., Tang, L.H., Zhu, X.D., Wu, Y.Q., Zhu, Z.B., Koyama, S., 2009b. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres. Energy & Fuels, 23:1990–1997. [doi:10.1021/ef800974d]

    Article  Google Scholar 

  • Song, W.J., Tang, L.H., Zhu, X.D., Wu, Y.Q., Zhu, Z.B., Koyama, S., 2010. Effect of coal ash composition on ash fusion temperatures. Energy & Fuels, 24(1):182–189. [doi:10.1021/ef900537m]

    Article  Google Scholar 

  • Swanson, M.L., 2000. Modeling of Ash Properties in Advanced Coal-Based Power System. Grand Forks, North Dakota.

    Google Scholar 

  • ten Brink, H.M., Eenkhoorn, S., Hamburg, G., 1996. A mechanistic study of the formation of slags from iron-rich coals. Fuel, 75(8):952–958. [doi:10.1016/0016-2361(96)00048-8]

    Article  Google Scholar 

  • van Dyk, J.C., Waanders, F.B., Hack, K., 2008. Behaviour of calcium-containing minerals in the mechanism towards in situ CO2 capture during gasification. Fuel, 87(12): 2388–2393. [doi:10.1016/j.fuel.2008.03.015]

    Article  Google Scholar 

  • van Dyk, J.C., Benson, S.A., Laumb, M.L., Waanders, B., 2009. Coal and coal ash characteristics to understand mineral transformations and slag formation. Fuel, 88(6): 1057–1063. [doi:10.1016/j.fuel.2008.11.034]

    Article  Google Scholar 

  • Vassilev, S.V., Kitanob, K., Takedab, S., Tsurueb, T., 1995. Influence of mineral and chemical composition of coal ashes on their fusibility. Fuel Processing Technology, 45(1):27–51. [doi:10.1016/0378-3820(95)00032-3]

    Article  Google Scholar 

  • Vassileva, C.G., Vassilev, S.V., 2006. Behaviour of inorganic matter during heating of Bulgarian coals 2. Subbituminous and bituminous coals. Fuel Processing Technology, 87(12):1095–1116. [doi:10.1016/j.fuproc.2006.08.006]

    Article  Google Scholar 

  • Wall, T.F., Liua, G.S., Wua, H.W., Roberts, D.G., Benfell, K.E., Guptaa, S., Lucas, J.A., Harris, D.J., 2002. The effects of pressure on coal reactions during pulverised coal combustion and gasification. Progress in Energy and Combustion Science, 28(5):405–433. [doi:10.1016/S0360-1285(02)00007-2]

    Article  Google Scholar 

  • Wang, Q.H., Jing, N.J., Luo, Z.Y., Li, X.M., Jie, T., 2010. Experiments on the effect of chemical components of coal ash on the sintering temperature. Journal of China Coal Society, 35(6):1015–1020 (in Chinese).

    Google Scholar 

  • Wu, H.W., Bryant, G., Wall, T., 2000. The effect of pressure on ash formation during pulverized coal combustion. Energy & Fuels, 14(4):745–750. [doi:10.1021/ef990080w]

    Article  Google Scholar 

  • Yang, J.K., Xiao, B., Boccaccini, A.R., 2009. Preparation of low melting temperature glass-ceramics from municipal waste incineration fly ash. Fuel, 88(7):1275–1280. [doi:10.1016/j.fuel.2009.01.019]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin-hui Wang.

Additional information

Project (No. 2011DFA72730-202) supported by the Research Project of US-China Clean Energy Research Center

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jing, Nj., Wang, Qh., Yang, Yk. et al. Influence of ash composition on the sintering behavior during pressurized combustion and gasification process. J. Zhejiang Univ. Sci. A 13, 230–238 (2012). https://doi.org/10.1631/jzus.A1100206

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1100206

Key words

CLC number

Navigation