Skip to main content
Log in

Optimal linear attitude estimators via geometric analysis

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Three optimal linear attitude estimators are proposed for single-point real-time estimation of spacecraft attitude using a geometric approach. The final optimal attitude is represented by modified Rodrigues parameters (MRPs). After introducing incidental right-hand orthogonal coordinates for each pair of measured values, three error vectors are obtained by the use of dot or/and cross products. Corresponding optimality criteria are rigorously quadratic and unconstrained, which do not coincide with Wahba’s constrained criterion. The singularity, which occurs when the principal angle is close to π, can be easily avoided by one proper rotation. Numerical simulations show that the proposed three optimal linear estimators can provide a precision comparable with those complying with the Wahba optimality definition, and have faster computational speed than the famous quaternion estimator (QUEST).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angeles, J., 1988. Rational Kinematics. Springer-Verlag, New York, Vol. 34, Chapters 1–3.

    Book  MATH  Google Scholar 

  • Bar-Itzhack, Y., 1996. REQUEST: A recursive QUEST algorithm for sequential attitude determination. Journal of Guidance, Control, and Dynamics, 19(5):1034–1038. [doi:10.2514/3.21742]

    Article  MATH  Google Scholar 

  • Cheng, Y., Shuster, M.D., 2007. The Speed of Attitude Estimation. Proceedings of the Advances in the Astronautical Sciences, 127:101–116.

    Google Scholar 

  • Choukroun, D., 2009. Quaternion Estimation Using Kalman Filtering of the Vectorized K-matrix. AIAA Guidance Navigation, and Control Conference.

  • Choukroun, D., Bar-Itzhack, I.Y., Oshman, Y., 2004. Optimal-REQUEST algorithm for attitude estimation. Journal of Guidance, Control, and Dynamics, 27(3):418–425. [doi:10.2514/1.10337]

    Article  Google Scholar 

  • Farrell, J.L., Stuelpnagel, J.C., Wessner, R.H., Velman, J.R., 1966. A least squares estimate of satellite aatitude. SIAM Review, 8(3):384–386. [doi:10.1137/1008080]

    Article  Google Scholar 

  • Markley, F.L., 1988. Attitude determination using vector observations and the singular value decomposition. The Journal of the Astronautical Sciences, 36(3):245–258.

    Google Scholar 

  • Markley, F.L., 1993. Attitude determination using vector observations: a fast optimal matrix algorithm. The Journal of the Astronautical Sciences, 41(2):261–280.

    MathSciNet  Google Scholar 

  • Markley, F.L., Mortari, D., 1999. How to Estimate Attitude from Vector Observations. AAS/AIAA Astrodynamics Conference.

  • Markley, F.L., Mortari, D., 2000. Quaternion attitude estimation using vector measurements. The Journal of the Astronautical Sciences, 48(2&3):359–380.

    Google Scholar 

  • Mortari, D., 1997a. ESOQ: A closed-form solution to the Wahba problem. The Journal of the Astronautical Sciences, 45(2):195–204.

    MathSciNet  Google Scholar 

  • Mortari, D., 1997b. ESOQ2: Single-point algorithm for fast optimal attitude determination. Advances in the Astronautical Sciences, 97(2):803–816.

    MathSciNet  Google Scholar 

  • Mortari, D., 2000. Second estimator for the optimal quaternion. Journal of Guidance, Control, and Dynamics, 23(5):885–888. [doi:10.2514/2.4618]

    Article  Google Scholar 

  • Mortari, D., Markley, F.L., Junkins, J.L., 2000. Optimal linear attitude estimator. Advances in the Astronautical Sciences, 105(1):465–478.

    Google Scholar 

  • Mortari, D., Markley, F.L., Singla, P., 2007. An optimal linear attitude estimator. Journal of Guidance, Control, and Dynamics, 30(6):1619–1627. [doi:10.2514/1.29568]

    Article  Google Scholar 

  • Shuster, M.D., 1978. Approximate Algorithms for Fast Optimal Attitude Computation. Proceedings of AIAA Guidance and Control Conference, p.88–95.

  • Shuster, M.D., 1989. A Simple Kalman filter and smoother for spacecraft attitude. Journal of the Astronautical Sciences, 37(1):89–106.

    Google Scholar 

  • Shuster, M.D., 2009. Filter QUEST or REQUEST. Journal of Guidance, Control, and Dynamics, 32(2):643–645. [doi:10.2514/1.40423]

    Article  Google Scholar 

  • Shuster, M.D., OH, S.D., 1981. Three-axis attitude determination from vector observations. Journal of Guidance and Control, 4(1):70–77.

    Article  MATH  Google Scholar 

  • Wahba, G., 1965. Problem 65-1: A least squares estimate of spacecraft attitude. SIAM Review, 7(3):409. [doi:10.1137/1007077]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-wei Shao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gong, Dr., Shao, Xw., Li, W. et al. Optimal linear attitude estimators via geometric analysis. J. Zhejiang Univ. Sci. A 12, 873–882 (2011). https://doi.org/10.1631/jzus.A1100146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1100146

Key words

CLC number

Navigation