Skip to main content
Log in

Naphthalene decomposition in a DC corona radical shower discharge

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The naphthalene decomposition in a corona radical shower discharge (CRS) was investigated, with attention paid to the influences of voltage and initial naphthalene density. The OH emission spectra were investigated so as to know the naphthalene decomposing process. The by-products were analyzed and a decomposing theory in discharge was proposed. The results showed that higher voltage and relative humidity were effective on decomposition. The initial concentration affected the decomposing efficiency of naphthalene. When the initial naphthalene density was 17 mg/m3, the decomposition rate was found to be 70% under 14 kV. The main by-products were carbon dioxide and water. However, a small amount of carbonic oxide, 1,2-ethanediol and acetaldehyde were found due to the incomplete oxidization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aranda, A., Lopez, J.M., Murillo, R., Mastral, A.M., Dejoz, A., Vazquez, I., Solsona, B., Yaylor, S.H., García, T., 2009. Total oxidation of naphthalene with high selectivity using a ceria catalyst prepared by a combustion method employing ethylene glycol. Journal of Hazardous Materials, 171(1–3):393–399. [doi:10.1016/j.jhazmat.2009.06.013]

    Article  Google Scholar 

  • Chang, J.S., Urashima, K., Tong, Y.X., Liu, W.P., Wei, H.Y., Yang, F.M., Liu, X.J., 2003. Simultaneous removal of NOx and SO2 from coal boiler flue gases by DC corona discharge ammonia radical shower system: pilot plant tests. Journal of Electrostatics, 57(3–4):313–323. [doi:10. 1016/S0304-3886(02)00168-7]

    Article  Google Scholar 

  • de Izarra, C., 2000. UV OH spectrum used as molecular pyrometer. Journal of Physics D: Applied Physics, 33(14): 1697–1704.

    Article  Google Scholar 

  • Dixon, J.K., Longfield, J.E., 1960. Hydrocarbon oxidation. Catalysis, 7:183–280.

    Google Scholar 

  • Ershov, A., Borysow, J., 1995. Dynamics of OH (X2Π, ν=0) in high-energy atmospheric pressure electrical pulsed discharge. Journal of Physics D: Applied Physics, 28(1): 68–74. [doi:10.1088/0022-3727/28/1/012]

    Article  Google Scholar 

  • Falkenstein, Z., 1997. Influence of ultraviolet illumination on OH formation in dielectric barrier discharge of Ar/O2/H2O: the Joshi effect. Journal of Applied Physics, 81(11):7158–7162. [doi:10.1063/1.365313]

    Article  Google Scholar 

  • Gao, X., Shen, X., Wu, Z.L., Luo, Z.Y., Ni, M.J., Cen, K.F., 2009. The Mechanism of Naphthalene Decomposition in Corona Radical Shower System by DC Discharge. 11th International Conference on Electrostatic Precipitation, Hangzhou, China, p.713–717.

  • García, T., Solsona, B., Taylor, S.H., 2006. Naphthalene total oxidation over metal oxide catalysts. Applied Catalysis B: Environmental, 66(1–2):92–99. [doi:10.1016/j.apcatb.2006.03.003]

    Article  Google Scholar 

  • Gong, Z.Q., Alef, K., Wilke, B.M., Li, P.J., 2007. Activated carbon adsorption of PAHs from vegetable oil used in soil remediation. Journal of Hazardous Materials, 143(1–2): 372–378. [doi:10.1016/j.jhazmat.2006.09.037]

    Article  Google Scholar 

  • Hwang, G., Park, S.R., Lee, C.H., Ahn, I.S., Yoon, Y.J., Mhin, B.J., 2009. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil. Journal of Hazardous Materials, 172(1):491–493. [doi:10.1016/j.jhazmat.2009.07.009]

    Article  Google Scholar 

  • Lair, A., Ferronato, C., Chovelon, J.M., Herrmann, J.M., 2008. Naphthalene degradation in water by heterogeneous photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 193(2-3):193–203. [doi:10.1016/j.jphotochem.2007.06.025]

    Article  Google Scholar 

  • Mastral, A.M., García, T., Callén, M.S., Navarro, M.V., Galbán, J., 2001. Removal of naphthalene phenanthrene, and pyrene by sorbents from hot gas. Environmental Science & Technology, 35(11):2395–2400. [doi:10.1021/es000152u]

    Article  Google Scholar 

  • Mista, W., Kacprzyk, R., 2008. Decomposition of toluene using non-thermal plasma reactor at room temperature. Catalysis Today, 137(2–4):345–349. [doi:10.1016/j.cattod.2008.02.009]

    Article  Google Scholar 

  • Nichipor, H., Dashouk, E., Yacko, S., Chmielewski, A.G., Zimek, Z., Sun, Y., 2002. Chlorinated hydrocarbons and PAH decomposition in dry and humid air by electron beam irradiation. Radiation Physics and Chemistry, 65(4–5):423–427. [doi:10.1016/S0969-806X(02)00352-3]

    Article  Google Scholar 

  • Nishino, N., Arey, J., Atkinson, R., 2009. Formation and reactions of 2-formylcinnamaldehyde in the OH radical-initiated reaction of naphthalene. Environmental Science & Technology, 43(5):1349–1353. [doi:10.1021/es802477s]

    Article  Google Scholar 

  • Onwudili, J.A., Williams, P.T., 2007. Reaction mechanisms for the decomposition of phenanthrene and naphthalene under hydrothermal conditions. The Journal of Supercritical Fluids, 39(3):399–408. [doi:10.1016/j.supflu.2006.03.014]

    Article  Google Scholar 

  • Pellerin, S., Cormier, J.M., Richard, F., Musiol, K., Chapelle, J., 1996. A spectroscopic diagnostic method using UV OH band spectrum. Journal of Physics D: Applied Physics, 29(3):726–739. [doi:10.1088/0022-3727/29/3/034]

    Article  Google Scholar 

  • Reed, D.R., Kass, S.R., 2000. Experimental determination of α and β C-H bond dissociation energies in naphthalene. Journal of Mass Spectrometry, 35(4):534–539. [doi:10.1002/(SICI)1096-9888(200004)35:4〈534::AID-JMS964〉3.0.CO;2-T]

    Article  Google Scholar 

  • Tamura, M., Berg, P.A., Harrington, J.E., Luque, J., Jeffries, J.B., Smith, G.P., Crosley, D.R., 1998. Collisional quenching of CH (A), OH (A) and NO (A) in low pressure hydrocarbon flames. Combustion and Flame, 114(3–4): 502–514. [doi:10.1016/S0010-2180(97)00324-6]

    Article  Google Scholar 

  • Urashima, K., Chang, J.S., 2000. Removal of volatile organic compounds from air streams and industrial flue gases by non-thermal plasma technology. IEEE Transactions on Dielectrics and Electrical Insulation, 7(5):602–614. [doi:10.1109/94.879356]

    Article  Google Scholar 

  • Vialaton, D., Richard, C., Baglio, D., 1999. Mechanism of the photochemical transformation of naphthalene in water. Journal of Photochemistry and Photobiology A: Chemistry, 123(1–3):15–19. [doi:10.1016/S1010-6030(99) 00044-1]

    Article  Google Scholar 

  • Wainwright, M.S., Foster, N.R., 1979. Catalysis, kinetics, and reactor design in phthalic anhydride synthesis. Catalysis Reviews, 19(2):211–292. [doi:10.1080/03602457908068056]

    Article  Google Scholar 

  • Wu, Z.L., Gao, X., Luo, Z.Y., Wei, E.Z., Zhang, Y.S., Zhang, J.Z., Ni, M.J., Cen, K.F., 2005. NOx treatment by DC corona radical shower with different geometric nozzle electrodes. Energy & Fuels, 19(6):2279–2286. [doi:10.1021/ef0400823]

    Article  Google Scholar 

  • Yu, L., Li, X.D., Tu, X., Wang, Y., Lu, S.Y., Yan, J.H., 2010. Decomposition of naphthalene by DC gliding arc gas discharge. The Journal of Physical Chemistry A, 114(1): 360–368. [doi:10.1021/jp905082s]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang Gao.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2006CB200303), the Chinese-Slovak Scientific and Technological Cooperation Program (No. 2010DFA92020), and the China Postdoctoral Science Foundation (No. 20100471698)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ni, Mj., Shen, X., Gao, X. et al. Naphthalene decomposition in a DC corona radical shower discharge. J. Zhejiang Univ. Sci. A 12, 71–77 (2011). https://doi.org/10.1631/jzus.A1010009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1010009

Key words

CLC number

Navigation