Skip to main content
Log in

A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The photoplethysmogram (PPG) of a pulse wave, similar in appearance to the arterial blood pressure (ABP) waveform, contains rich information about the cardiovascular system. The decay time constant RC, equal to the product of peripheral resistance R and total arterial compliance C, is a meaningful cardiovascular model parameter in vascular assessment. Using or ameliorating the existing ABP methods does not achieve a satisfactory estimation of RC from the PPG volume pulse (VRC). Thus, a novel non-iterative shape method (NSM) of evaluating VRC is introduced in this paper. The mathematic expression between a novel, readily available morphological parameter called the area difference ratio (ADR) and VRC was established. As it was difficult to calculate VRC from the complicated expression analytically, we recommend estimating it using a piecewise linear interpolation criterion. Also, since the effect of the PPG magnitude is eliminated in the calculation of ADR, precaliberation or normalization is dispensable in the NSM. Results of human experiments indicated that the NSM was computationally efficient, and the simulation experiments confirmed that the NSM was theoretically available for ABP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahonen, J., Jokela, R., Uutela, K., Huiku, M., 2007. Surgical stress index reflects surgical stress in gynaecological laparoscopic day-case surgery. British Journal of Anaesthesia, 98(4):456–461. [doi:10.1093/bja/aem035]

    Article  Google Scholar 

  • Alastruey, J., Parker, K.H., Peiro, J., Sherwin, S.J., 2009. Analysing the pattern of pulse waves in arterial networks: a time-domain study. Journal of Engineering Mathematics, 64(4):331–351. [doi:10.1007/s10665-009-9275-1]

    Article  MathSciNet  MATH  Google Scholar 

  • Allen, J., 2007. Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3):R1–R39. [doi:10.1088/0967-3334/28/3/R01]

    Article  Google Scholar 

  • Bhattacharya, J., Kanjilal, P.P., Muralidhar, V., 2001. Analysis and characterization of photo-plethysmographic signal. IEEE Transactions on Biomedical Engineering, 48(1): 5–11. [doi:10.1109/10.900243]

    Article  Google Scholar 

  • Eyal, S., Oz, O., Eliash, S., Wasserman, G., Akselrod, S., 1997. The diastolic decay constant in spontaneously hypertensive rats versus WKY rats as an indicator for vasomotor control. Journal of the Autonomic Nervous System, 64(1):24–32. [doi:10.1016/s0165-1838(97)00012-X]

    Article  Google Scholar 

  • Fogliardi, R., Burattini, R., Shroff, S.G., Campbell, K.B., 1996. Fit to diastolic arterial pressure by third-order lumped model yields unreliable estimates of arterial compliance. Medical Engineering & Physics, 18(3):225–233. [doi:10.1016/1350-4533(95)00042-9]

    Article  Google Scholar 

  • Gnudi, G., 1998. New closed-form expressions for the estimation of arterial Windkessel compliance. Computers in Biology and Medicine, 28(3):207–223. [doi:10.1016/S0010-4825(98)00008-0]

    Article  Google Scholar 

  • Haffty, B.G., O’Hare, N.E., Singh, J.B., Spodick, D.H., 1983. Noninvasive tracking of peripheral resistance by ear densitography. Chest, 83(5):771–775. [doi:10.1378/chest.83.5.771]

    Article  Google Scholar 

  • Hashimoto, J., Chonan, K., Aoki, Y., Nishimura, T., Ohkubo, T., Hozawa, A., Suzuki, M., Matsubara, M., Michimata, M., Araki, T., et al., 2002. Pulse wave velocity and the second derivative of the finger photoplethysmogram in treated hypertensive patients: their relationship and associating factors. Journal of Hypertension, 20(12): 2415–2422.

    Article  Google Scholar 

  • Huiku, M., Uutela, K., van Gils, M., Korhonen, I., Kymalainen, M., Merilainen, P., Paloheimo, M., Rantanen, M., Takala, P., Viertio-Oja, H., et al., 2007. Assessment of surgical stress during general anaesthesia. British Journal of Anaesthesia, 98(4):447–455. [doi:10.1093/bja/aem004]

    Article  Google Scholar 

  • Karamanoglu, M., 1997. A system for analysis of arterial blood pressure waveforms in humans. Computers and Biomedical Research, 30(3):244–255. [doi:10.1006/cbmr.1997.1450]

    Article  Google Scholar 

  • Li, B.N., Dong, M.C., Vai, M.I., 2010a. On an automatic delineator for arterial blood pressure waveforms. Biomedical Signal Processing and Control, 5(1):76–81. [doi:10.1016/j.bspc.2009.06.002]

    Article  Google Scholar 

  • Li, B.N., Dong, M.C., Vai, M.I., 2010b. Modelling cardiovascular physiological signals using adaptive Hermite and wavelet basis functions. IET Signal Processing, 4(5):588–597. [doi:10.1049/iet-spr.2009.0002]

    Article  Google Scholar 

  • Lopez-Beltran, E.A., Blackshear, P.L., Finkelstein, S.M., Cohn, J.N., 1998. Non-invasive studies of peripheral vascular compliance using a non-occluding photoplethysmo-graphic method. Medical and Biological Engineering and Computing, 36(6):748–753. [doi:10.1007/BF02518879]

    Article  Google Scholar 

  • Lu, S., Zhao, H., Ju, K., Shin, K., Lee, M., Shelley, K., Chon, K.H., 2008. Can photoplethysmography variability serve as an alternative approach to obtain heart rate variability information? Journal of Clinical Monitoring and Computing, 22(1):23–29. [doi:10.1007/s10877-007-9103-y]

    Article  Google Scholar 

  • Marcinkevics, Z., Kusnere, S., Aivars, J.I., Rubins, U., Zehtabi, A.H., 2009. The shape and dimensions of photoplethysmographic pulse waves: a measurement repeatability study. Acta Universitatics Latviensis Biology, 753:99–106.

    Google Scholar 

  • Millasseau, S.C., Guigui, F.G., Kelly, R.P., Prasad, K., Cockcroft, J.R., Ritter, J.M., Chowienczyk, P.J., 2000. Noninvasive assessment of the digital volume pulse: comparison with the peripheral pressure pulse. Hypertension, 36(6):952–956.

    Article  Google Scholar 

  • Millasseau, S.C., Kelly, R.P., Ritter, J.M., Chowienczyk, P.J., 2003. The vascular impact of aging and vasoactive drugs: comparison of two digital volume pulse measurements. American Journal of Hypertension, 16(6):467–472. [doi: 10.1016/S0895-7061(03)00569-7]

    Article  Google Scholar 

  • Miyai, N., Miyashita, K., Arita, M., Morioka, I., Kamiya, K., Takeda, S., 2001. Noninvasive assessment of arterial distensibility in adolescents using the second derivative of photoplethysmogram waveform. European Journal of Applied Physiology, 86(2):119–124. [doi:10.1007/s004210100520]

    Article  Google Scholar 

  • Randall, O.S., Vandenbos, G.C., Westerhof, N., Pot, F.O.M., 1984. Systemic compliance-does it play a role in the genesis of essential-hypertension. Cardiovascular Research, 18(8):455–462. [doi:10.1093/cvr/18.8.455]

    Article  Google Scholar 

  • Reisner, A., Shaltis, P.A., McCombie, D., Asada, H.H., 2008. Utility of the photoplethysmogram in circulatory monitoring. Anesthesiology, 108(5):950–958. [doi:10.1097/ALN.0b013e31816c89e1]

    Article  Google Scholar 

  • Segers, P., Verdonck, P., Deryck, Y., Brimioulle, S., Naeije, R., Carlier, S., Stergiopulos, N., 1999. Pulse pressure method and the area method for the estimation of total arterial compliance in dogs: sensitivity to wave reflection intensity. Annals of Biomedical Engineering, 27(4): 480–485. [doi:10.1114/1.192]

    Article  Google Scholar 

  • Seitsonen, E.R., Korhonen, I.K., van Gils, M.J., Huiku, M., Lotjonen, J.M., Korttila, K.T., Yli-Hankala, A.M., 2005. EEG spectral entropy, heart rate, photoplethysmography and motor responses to skin incision during sevoflurane anaesthesia. Acta Anaesthesiologica Scandinavica, 49(3): 284–292. [doi:10.1111/j.1399-6576.2005.00654.x]

    Article  Google Scholar 

  • Seki, K., 1988. Noninvasive measurement of elastic properties in human finger arteries: clinical data comparing blood pressure and funduscopic examination. Heart and Vessels, 4(4):221–228. [doi:10.1007/BF02058590]

    Article  Google Scholar 

  • Shim, Y., Pasipoularides, A., Straley, C.A., Hampton, T.G., Soto, P.F., Owen, C.H., Davis, J.W., Glower, D.D., 1994. Arterial windkessel parameter estimation: a new time-domain method. Annals of Biomedical Engineering, 22(1):66–77. [doi:10.1007/BF02368223]

    Article  Google Scholar 

  • Shimazu, H., Yamakoshi, K.I., Kamiya, A., 1986. Noninvasive Measurement of the volume elastic-modulus in finger arteries using photoelectric plethysmography. IEEE Transactions on Biomedical Engineering, BME-33(8): 795–798. [doi:10.1109/TBME.1986.325906]

    Article  Google Scholar 

  • Stergiopulos, N., Segers, P., Westerhof, N., 1999. Use of pulse pressure method for estimating total arterial compliance in vivo. American Journal of Physiology-Heart and Circulatory Physiology, 276(2):H424–H428.

    Google Scholar 

  • Takazawa, K., Tanaka, N., Fujita, M., Matsuoka, O., Saiki, T., Aikawa, M., Tamura, S., Ibukiyama, C., 1998. Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform. Hypertension, 32(2):365–370.

    Article  Google Scholar 

  • Wang, J.J., O’Brien, A.B., Shrive, N.G., Parker, K.H., Tyberg, J.V., 2003. Time-domain representation of ventricular-arterial coupling as a windkessel and wave system. American Journal of Physiology-Heart and Circulatory Physiology, 284(4):H1358–H1368.

    Article  Google Scholar 

  • Westerhof, N., Lankhaar, J.W., Westerhof, B.E., 2009. The arterial Windkessel. Medical and Biological Engineering and Computing, 47(2):131–141. [doi:10.1007/s11517-008-0359-2]

    Article  Google Scholar 

  • Yamakoshi, K., Kamiya, A., 1987. Noninvasive measurement of arterial blood pressure and elastic properties using photoelectric plethysmography technique. Medical Progress through Technology, 12(1–2):123–143.

    Article  Google Scholar 

  • Yin, F.C., Liu, Z.R., 1989. Estimating arterial resistance and compliance during transient conditions in humans. American Journal of Physiology-Heart and Circulatory Physiology, 257(1):H190–H197.

    Google Scholar 

  • Zahedi, E., Chellappan, K., Ali, M.A.M., Singh, H., 2007. Analysis of the effect of ageing on rising edge characteristics of the photoplethysmogram using a modified Windkessel model. Cardiovascular Engineering, 7(4):172–181. [doi:10.1007/s10558-007-9037-5]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Jiang.

Additional information

Project (No. 81070885) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, Lx., Wei, M., Wang, X. et al. A novel non-iterative shape method for estimating the decay time constant of the finger photoplethysmographic pulse. J. Zhejiang Univ. Sci. A 12, 438–445 (2011). https://doi.org/10.1631/jzus.A1000386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000386

Key words

CLC number

Navigation