Skip to main content
Log in

Experimental evaluation of the effect of an internal heat exchanger on a transcritical CO2 ejector system

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This study presents experimental results focused on a performance comparison of a transcritical CO2 ejector system without an internal heat exchanger (IHX) (EJE-S) to a transcritical CO2 ejector system with an IHX (EJE-IHX-S). The comparison includes the effects of changes in operating conditions such as cooling water flow rate and inlet temperature. Experiments are conducted to assess the influence of the IHX on the heating coefficient of performance (COPr), heating capacity, entrainment ratio, pressure lift, and other parameters. The primary flow rate of the EJE-IHX-S is higher than that of the EJE-S. The pressure lift and actual ejector work recovery are reduced when the IHX is added to the transcritical CO2 ejector system. Using a more practical performance calculation, the compression ratio in the EJE-S is reduced by 10.0%–12.1%, while that of EJE-IHX-S is reduced only by 5.6%–6.7% compared to that of a conventional transcritical CO2 system. Experimental results are used to validate the findings that the IHX weakens the contribution of the ejector to the system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aprea, C., Maiorino, A., 2008. An experimental evaluation of the transcritical CO2 refrigerator performances using an internal heat exchanger. International Journal of Refrigeration, 31(6):1006–1011. [doi:10.1016/j.ijrefrig.2007.12.016]

    Article  Google Scholar 

  • Boewe, D., Bullard, C., Yin, J., Hrnjak, P.S., 2001. Contribution of internal heat exchanger to transcritical R744 cycle performance. International Journal of HVAC&R Research, 7(2):155–168.

    Article  Google Scholar 

  • Chen, Y., Gu, J.J., 2005. The optimum high pressure for CO2 transcritical refrigeration systems with internal heat exchangers. International Journal of Refrigeration, 28(8): 1238–1249. [doi:10.1016/j.ijrefrig.2005.08.009]

    Article  Google Scholar 

  • Elbel, S.W., Hrnjak, P.S., 2004. Effect of Internal Heat Exchanger on Performance of Transcritical CO2 Systems with Ejector. 10th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, USA, Paper R166.

  • Elbel, S.W., Hrnjak, P.S., 2006. A Thermodynamic Property Chart as a Visual Aid to Illustrate the Interference between Expansion Work Recovery and Internal Heat Exchanger. 11th International Refrigeration and Air Conditioning Conference at Purdue, West Lafayette, USA, Paper R165.

  • Elbel, S.W., Hrnjak, P.S., 2008. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. International Journal of Refrigeration, 31(3):411–422. [doi:10.1016/j.ijrefrig.2007.07.013]

    Article  Google Scholar 

  • Giuliani, G., Hewitt, N.J., Marchesi, D.F., Polonara, F., 1999. Composition shift in liquid-recirculation refrigeration systems: an experimental investigation for the pure fluid R134a and the mixture R32/134a. International Journal of Refrigeration, 22(6):486–498. [doi:10.1016/S0140-7007(99)00009-2]

    Article  Google Scholar 

  • Hoegberg, M., Vamling, L., Bemtsson, T., 1993. Calculation methods for comparing the performance of pure and mixed working fluid in heat pump applications. International Journal of Refrigeration, 16(6):403–413. [doi:10.1016/0140-7007(93)90057-F]

    Article  Google Scholar 

  • Kim, M.H., Pettersen, J., Bullard, C.W., 2004. Fundamental process and system design issues in CO2 vapor compression systems. Progress in Energy and Combustion Science, 30(2):119–174. [doi:10.1016/j.pecs.2003. 09.002]

    Article  Google Scholar 

  • Klein, S.A., Reindl, D.T., Brownell, K., 2000. Refrigeration system performance using liquid-suction heat exchangers. International Journal of Refrigeration, 23(8): 588–596. [doi:10.1016/S0140-7007(00)00008-6]

    Article  Google Scholar 

  • Liu, S., 2008. Performance Study on an Ejector Used in CO2-Heat Pump Water Heater. MS Thesis, Zhejiang University, Hangzhou, China, p.1–76.

    Google Scholar 

  • Lorentzen, G., Pettersen, J., 1993. A new efficient and environmentally benign system for car air-conditioning. International Journal of Refrigeration, 16(1):4–12. [doi:10.1016/0140-7007(93)90014-Y]

    Article  Google Scholar 

  • Mu, J.Y., Chen, J.P., Chen, Z.J., 2003. System design and analysis of the transcritical carbon dioxide automotive air-conditioning system. Journal of Zhejiang University-SCIENCE A, 4(3):305–308. [doi:10.1631/jzus.2003.0305]

    Article  Google Scholar 

  • Robinson, D.M., Groll, E.A., 1998. Efficiencies of transcritical CO2 cycles with and without an expansion turbine. International Journal of Refrigeration, 21(7):577–589. [doi:10.1016/S0140-7007(98)00024-3]

    Article  Google Scholar 

  • Tao, Y.B., He, Y.L., Tao, W.Q., Wu, Z.G., 2010. Experimental study on the performance of CO2 residential air-conditioning system with an internal heat exchanger. Energy Conversion and Management, 51(1):64–70. [doi:10.1016/j.enconman.2009.08.024]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-ming Chen.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2010CB227304), and the National Key Technologies R & D Program in China (No. 2006BAJ01A10)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Xx., Chen, Gm., Tang, Lm. et al. Experimental evaluation of the effect of an internal heat exchanger on a transcritical CO2 ejector system. J. Zhejiang Univ. Sci. A 12, 146–153 (2011). https://doi.org/10.1631/jzus.A1000212

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000212

Key words

CLC number

Navigation