Skip to main content
Log in

A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A numerical algorithm using a bilinear or linear finite element and semi-implicit three-step method is presented for the analysis of incompressible viscous fluid problems. The streamline upwind/Petrov-Galerkin (SUPG) stabilization scheme is used for the formulation of the Navier-Stokes equations. For the spatial discretization, the convection term is treated explicitly, while the viscous term is treated implicitly, and for the temporal discretization, a three-step method is employed. The present method is applied to simulate the lid driven cavity problems with different geometries at low and high Reynolds numbers. The results compared with other numerical experiments are found to be feasible and satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bao, Y., Zhou, D., Zhao, Y.Z., 2010a. A two-step taylor-characteristic-based Galerkin method for incompressible flows and its application to flow over triangular cylinder with different incidence angles. International Journal for Numerical Methods in Fluids, 62(11):1181–1208. [doi:10.1002/fld.2054]

    MathSciNet  MATH  Google Scholar 

  • Bao, Y., Zhou, D., Huang, C., 2010b. Numerical simulation of flow over three circular cylinders in equilateral arrangements at low Reynolds number by a second-order characteristic-based split finite element method. Computers & Fluids, 39(5):882–899. [doi:10.1016/j.compfluid.2010.01.002]

    Article  MATH  Google Scholar 

  • Belytschko, T.B., Liu, W.K., Moran, B., 2000. Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester.

    MATH  Google Scholar 

  • Brezzi, F., Bristeau, M.O., Franca, L.P., Mallet, M., Roge, G., 1992. A relationship between stabilized finite element methods and the Galerkin method with bubble functions. Computer Methods in Applied Mechanics and Engineering, 96(1):117–129. [doi:10.1016/0045-7825(92)90102-P]

    Article  MathSciNet  MATH  Google Scholar 

  • Brooks, A.N., Hughes, T.J.R., 1982. Streamline upwind/Petrov-Galerkin formulation for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 32(1–3):199–259. [doi:10.1016/0045-7825(82)90071-8]

    Article  MathSciNet  MATH  Google Scholar 

  • Demirdžić, I., Lilek, Ž., Perić, M., 1992. Fluid flow and heat transfer test problems for non-orthogonal grids: benchmark solutions. International Journal for Numerical Methods in Fluids, 15(3):329–354. [doi:10.1002/fld.1650150306]

    Article  MATH  Google Scholar 

  • Dettmer, W., Perić, D., 2006a. A computational framework for fluid-rigid body interaction: Finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering, 195(13–16):1633–1666. [doi:10.1016/j.cma.2005.05.033]

    Article  MathSciNet  MATH  Google Scholar 

  • Dettmer, W., Perić, D., 2006b. A computational framework for free surface fluid flows accounting for surface tension. Computer Methods in Applied Mechanics and Engineering, 195(23–24):3038–3071. [doi:10.1016/j.cma.2004.07.057]

    Article  MathSciNet  MATH  Google Scholar 

  • Dettmer, W., Perić, D., 2006c. A computational framework for fluid-structure interaction: Finite element formulation and applications. Computer Methods in Applied Mechanics and Engineering, 195(41–43):5754–5779. [doi:10.1016/j.cma.2005.10.019]

    Article  MATH  Google Scholar 

  • Donea, J., Giuliani, S., Laval, H., Quartapelle, L., 1984. Time-accurate solution of advection-diffusion problems by finite elements. Computer Methods in Applied Mechanics and Engineering, 45(1–3):123–145. [doi:10.1016/0045-7825(84)90153-1]

    Article  MathSciNet  MATH  Google Scholar 

  • Franca, L.P., Frey, S.L., 1992. Stabilized finite element methods: II. The incompressible Navier-Stokes equations. Computer Methods in Applied Mechanics and Engineering, 99(2–3):209–233. [doi:10.1016/0045-7825(92)90041-H]

    Article  MathSciNet  MATH  Google Scholar 

  • Ghia, U., Ghia, K.N., Shin, C.T., 1982. High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method. Journal of Computational Physics, 48(3):387–411. [doi:10.1016/0021-9991(82)90058-4]

    Article  MATH  Google Scholar 

  • Hughes, T.J.R., 1995. Multiscale phenomena: Greens functions subgrid scale models, bubbles and the origins of stabilized methods. Computer Methods in Applied Mechanics and Engineering, 127(1-4):387–401. [doi:10.1016/0045-7825(95)00844-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T.J.R., Tezduyar, T.E., 1984. Finite element methods for first-order hyperbolic systems with particular emphasis on the compressible Euler equations. Computer Methods in Applied Mechanics and Engineering, 45(1–3): 217–284. [doi:10.1016/0045-7825(84)90157-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T.J.R., Franca, L.P., Balestra, M., 1986. A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuška-Brezzi condition: A stable Petrov-Galerkin formulation of the Stokes problem accommodating equal-order interpolations. Computer Methods in Applied Mechanics and Engineering, 59(1): 85–99. [doi:10.1016/0045-7825(86)90025-3]

    Article  MathSciNet  MATH  Google Scholar 

  • Hughes, T.J.R., Franca, L.P., Hulbert G.M., 1989. A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Computer Methods in Applied Mechanics and Engineering, 73(2):173–189. [doi:10.1016/0045-7825(89)90111-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang, C.B., Kawahara, M., 1993. A three step finite element method for unsteady incompressible flows. Computational Mechanics, 11(5–6):355–370. [doi:10.1007/BF00350093]

    Article  MATH  Google Scholar 

  • Jyotsna, R., Vanka, S.P., 1995. Multigrid calculation of steady, viscous flow in a triangular cavity. Journal of Computational Physics, 122(1):107–117. [doi:10.1006/jcph.1995.1200]

    Article  MATH  Google Scholar 

  • Kjellgren, P., 1997. A semi-implicit fractional step finite element method for viscous incompressible flows. Computational Mechanics, 20(6):541–550. [doi:10.1007/s004660050274]

    Article  MathSciNet  MATH  Google Scholar 

  • Kohno, H., Bathe, K.J., 2006. A flow-condition-based interpolation finite element procedure for triangular grids. International Journal for Numerical Methods in Fluids, 51(6):673–699. [doi:10.1002/fld.1246]

    Article  MathSciNet  MATH  Google Scholar 

  • Oñate, E., 1998. Derivation of stabilized equations for advective-diffusive transport and fluid flow problems. Computer Methods in Applied Mechanics and Engineering, 151(1–2):233–267. [doi:10.1016/S0045-7825(97)00119-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Oñate, E., Valls, A., Garcia, J., 2007. Modeling incompressible flows at low and high Reynolds numbers via a finite calculus-finite element approach. Journal of Computational Physics, 224(1):332–351. [doi:10.1016/j.jcp.2007.02.026]

    Article  MathSciNet  MATH  Google Scholar 

  • Ribbens, C.J., Watson, L.T., 1994. Steady viscous flow in a triangular cavity. Journal of Computational Physics, 112(1):173–181. [doi:10.1006/jcph.1994.1090]

    Article  MATH  Google Scholar 

  • Selmin, V., Donea, J., Quartapelle, L., 1985. Finite element methods for nonlinear advection. Computer Methods in Applied Mechanics and Engineering, 52(1–3):817–845. [doi:10.1016/0045-7825(85)90016-7]

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar, T.E., 2007a. Finite elements in fluids: Stabilized formulations and moving boundaries and interfaces. Computers & Fluids, 36(2):191–206. [doi:10.1016/j.compfluid.2005.02.011]

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar, T.E., 2007b. Finite elements in fluids: Special methods and enhanced solution techniques. Computers & Fluids, 36(2):207–223. [doi:10.1016/j.compfluid.2005.02.010]

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar, T.E., Ganjoo, D.K., 1986. Petrov-Galerkin formulations with weighting functions dependent upon spatial and temporal discretization: Applications to transient convection-diffusion problems. Computer Methods in Applied Mechanics and Engineering, 59(1):49–71. [doi:10.1016/0045-7825(86)90023-X]

    Article  MathSciNet  MATH  Google Scholar 

  • Zienkiewicz, O.C., Codina, R., 1995. A general algorithm for compressible and incompressible flow. Part I: The split characteristic based scheme. International Journal for Numerical Methods in Fluids, 20(8–9):869–885. [doi:10.1002/fld.1650200812]

    MathSciNet  MATH  Google Scholar 

  • Zienkiewicz, O.C., Morgan, K., Satya Sai, B.V.K., Codina, R., Vazquez, M., 1995. A general algorithm for compressible and incompressible flow. Part II: Tests on the explicit form. International Journal for Numerical Methods in Fluids, 20(8–9):887–913. [doi:10.1002/fld.1650200813]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dai Zhou.

Additional information

Project supported by the National Natural Science Foundation of China (No. 51078230), the Research Fund for the Doctoral Program of Higher Education of China (No. 200802480056), and the Key Project of Fund of Science and Technology Development of Shanghai (No. 10JC1407900), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Zhou, D. & Bao, Y. A semi-implicit three-step method based on SUPG finite element formulation for flow in lid driven cavities with different geometries. J. Zhejiang Univ. Sci. A 12, 33–45 (2011). https://doi.org/10.1631/jzus.A1000098

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A1000098

Key words

CLC number

Navigation