Skip to main content
Log in

Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions

  • Science Letters
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The hydrothermal experiments with ketones and formic acid showed that the hydrogen transfer reduction of ketones can be conducted using formic acid as a hydride donor in the presence of NaOH at 300 °C. The yield of alcohols was considerably higher at a much lower ratio of hydrogen source to ketones than the traditional Meerwein-Ponndorf-Verley (MPV) reduction, reaching 60% for isopropanol from acetone and 70% for lactic acid from pyruvic acid. Water molecules may act as a catalyst in the hydrogen transfer reduction of ketones under hydrothermal conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akiya, N., Savage, P.E., 2002. The roles of water for chemical reactions in high-temperature water. Chemical Reviews, 102(8):2725–2750. [doi:10.1021/cr000668w]

    Article  Google Scholar 

  • Alonso, F., Riente, P., Yus, M., 2008a. Hydrogen-transfer reduction of carbonyl compounds catalysed by nickel nanoparticles. Tetrahedron Letters, 49(12):1939–1942. [doi:10.1016/j.tetlet.2008.01.097]

    Article  Google Scholar 

  • Alonso, F., Riente, P., Yus, M., 2008b. Hydrogen-transfer reduction of carbonyl compounds promoted by nickel nanoparticles. Tetrahedron, 64(8):1847–1852. [doi:10.1016/j.tet.2007.11.093]

    Article  Google Scholar 

  • Campbell, E.J., Zhou, H., Nguyen, S.T., 2001. Catalytic Meerwein-Ponndorf-Verley reduction by simple aluminum complexes. Organic Letters, 3(15):2391–2393. [doi:10.1021/ol0162116]

    Article  Google Scholar 

  • Creyghton, E.J., Ganeshie, S.D., Downing, R.S., van Bekkum, H., 1997. Stereoselective Meerwein-Ponndorf-Verley and oppenauer reactions catalysed by zeolite BEA. Journal of Molecular Catalysis A: Chemical, 115(3):457–472. [doi:10.1016/S1381-1169(96)00351-2]

    Article  Google Scholar 

  • de Graauw, C.F., Peters, J.A., van Bekkum, H., Huskens, J., 1994. Meerwein-Ponndorf-Verley reductions and oppenauer oxidations: an integrated approach. Synthesis, 1994(10):1007–1017. [doi:10.1055/s-1994-25625]

    Article  Google Scholar 

  • Ekström, J., Wettergren, J., Adolfsson, H., 2007. A simple and efficient catalytic method for the reduction of ketones. Advanced Synthesis & Catalysis, 349(10):1609–1613. [doi:10.1002/adsc.200700091]

    Article  Google Scholar 

  • Fujii, A., Hashiguchi, S., Uematsu, N., Ikariya, T., Noyori, R., 1996. Ruthenium(II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. Journal of the American Chemical Society, 118(10):2521–2522.

    Article  Google Scholar 

  • Jin, F.M., Kishita, A., Moriya, T., Enomoto, H., 2001. Kinetics of oxidation of food wastes with H2O2 in supercritical water. The Journal of Supercritical Fluids, 19(3):251–262. [doi:10.1016/S0896-8446(00)00094-2]

    Article  Google Scholar 

  • Jin, F.M., Zhou, Z., Enomoto, H., Moriya, T., Higashijima, H., 2004. Conversion mechanism of cellulosic biomass to lactic acid in subcritical water and acid-base catalytic effect of subcritical water. Chemistry Letters, 33(2):126–127. [doi:10.1246/cl.2004.126]

    Article  Google Scholar 

  • Jin, F.M., Yun, J., Li, G.M., Kishita, A., Tohji, K., Enomoto, H., 2008. Hydrothermal conversion of carbohydrate biomass into formic acid at mild temperatures. Green Chemistry, 10(6):612–615. [doi:10.1039/b802076k]

    Article  Google Scholar 

  • Kuhlmann, B., Arnett, E.M., Siskin, M., 1994. Classical or ganic reactions in pure superheated water. The Journal of Organic Chemistry, 59(11):3098–3101. [doi:10.1021/jo00090a030]

    Article  Google Scholar 

  • Larock, R.C., 1989. Comprehensive Organic Transformation. VCH Publication, New York, p.35–39.

    Google Scholar 

  • Li, C., Yamai, I., Murase, Y., Kato, E., 1989. Formation of acicular monoclinic zirconia particles under hydrothermal conditions. Journal of the American Ceramic Society, 72(8):1479–1482. [doi:10.1111/j.1151-2916.1989.tb07681.x]

    Article  Google Scholar 

  • Matharu, D.S., Morris, D.J., Clarkson, G.J., Wills, M., 2006. An outstanding catalyst for asymmetric transfer hydrogenation in aqueous solution and formic acid/triethylamine. Chemical Communications, 30:3232–3234. [doi:10.1039/b606288a]

    Article  Google Scholar 

  • Meerwein, H., Schmidt, R., 1925. Ein neues verfahren zur reaktion von aldehyden und ketonen. Justus Liebigs Annalen der Chemie, 444(1):221–238 (in German).

    Article  Google Scholar 

  • Naskar, S., Bhattacharjee, M., 2007. Regiospecific solvent-free transfer hydrogenation of α, β-unsaturated carbonyl compounds catalyzed by a cationic ruthenium(II) compound. Tetrahedron Letters, 48(3):465–467. [doi:10.1016/j.tetlet.2006.11.063]

    Article  Google Scholar 

  • Ponndorf, W., 1926. Der reversible austausch der oxydationsstufen zwischen aldehyden oder ketonen einerseits und primären oder sekundären alkoholen anderseits. Zeitschrift für Angewandte Chemie, 39(5):138–143 (in Germany). [doi:10.1002/ange.19260390504]

    Article  Google Scholar 

  • Ruiz, J.R., Jiménez-Sanchidriána, C., Hidalgoa, J.M., 2007. Meerwein-Ponndorf-Verley reaction of acetophenones with 2-propanol over MgAl mixed oxide: the substituent effect. Catalysis Communications, 8(7):1036–1040. [doi:10.1016/j.catcom.2006.10.007]

    Article  Google Scholar 

  • Shaw, R.W., Brill, Y.B., Clifford, A.A., Eckert, C.A., Franck, E.U., 1991. Supercritical water a medium for chemistry. Chemical Engineering News, 69(51):26–39.

    Article  Google Scholar 

  • Sheldon, R.A., 1994. Consider the environmental quotient. ChemTech, 24(3):38–47.

    Google Scholar 

  • Tsujino, Y., Wakai, C., Matubayasi, N., Nakahara, M., 1999. Noncatalytic cannizzaro-type reaction of formaldehyde in hot water. Chemistry Letters, 28(4):287–288. [doi:10.1246/cl.1999.287]

    Article  Google Scholar 

  • Watanabe, M., Sato, T., Inomata, H., Smith, R.L., Arai, K., Kruse, A., Dinjus, E., 2004. Chemical reactions of C1 compounds in near-critical and supercritical water. Chemical Reviews, 104(12):5803–5822. [doi:10.1021/cr020415y]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang-ming Jin.

Additional information

Project supported by the State Key Laboratory of Pollution Control and Resources Reuse in China (Tongji University) (No. PCRRK08002), the National Key Technology R&D Program of China (No. 2008BAJ08B13), and the Shanghai Pujiang Elitist Program of China (No. 07pj14083)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shen, Z., Jin, Fm., Zhang, Yl. et al. Hydrogen transfer reduction of ketones using formic acid as a hydrogen donor under hydrothermal conditions. J. Zhejiang Univ. Sci. A 10, 1631–1635 (2009). https://doi.org/10.1631/jzus.A0920097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0920097

Key words

CLC number

Navigation