Skip to main content
Log in

A simple approach for determining the preload of a wire race ball bearing

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Wire race ball bearings have been widely used in high-tech weapons. The preload of a wire race ball bearing is crucial in engineering applications. In this study, a more effective approach is proposed for exact determination of the wire race ball bearing preload. A new mathematical model of the preload and the starting torque of the wire race ball bearing was built using the theorem of the 3D rolling friction resistance and the non-conforming contact theory. Employing a wire race ball bearing with a 1000 mm diameter used in a specific type of aircraft simulating rotary table, the numerical analysis in MATLAB® showed that the preload magnitude can be controlled in the range of 130–140 μm. As verification, the experimental results were in agreement with the theoretical results, and confirm the feasibility of this method. This new approach is more exact in the preload range of 10–158 μm than that computed by the numerical method reported in our previous work (Shan et al., 2007b). This implies that the present method contributes to more effectively preventing rolling noise, overturning moments and wear of the wire race ball bearing. The current research provides critical technical support for the engineering application of wire race ball bearings with large diameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, W.J., 1964. Rolling-element Bearings, Advanced Bearing Technology. Bisson, E.E., Anderson, W.J. (Eds.), NASA SP-38, p.139–173.

  • Drutowski, R.C., 1959. Energy losses of balls rolling on plates. Journal of Basic Engineering, Series D, 81(2):233–238.

    Google Scholar 

  • Drutowski, R.C., 1962. The Linear Dependence of Rolling Friction on Stressed Volume, Rolling Contact Phenomena. Bidwell, J.B. (Ed.), Elsevier Publishing Co., Amsterdam, p.113–131.

    Google Scholar 

  • Drutowski, R.C., Mikus, E.B., 1960. The effect of ball bearing steel structure on rolling friction and contact plastic deformation. Journal of Basic Engineering, Series D, 82(2):302–308.

    Article  Google Scholar 

  • Fan, S.L., 2005. The structure design of azimuth branch sustatined rotating device in some big antenna pedestal. Modern Radar, 27:67–70 (in Chinese).

    Google Scholar 

  • Gao, Y.F., Bower, A.F., Kim, K.S., Lev, L., Cheng, Y.T., 2006. The behavior of an elastic-perfectly plastic sinusoidal surface under contact loading. Wear, 261(2):145–154. [doi:10.1016/j.wear.2005.09.016]

    Article  Google Scholar 

  • Jamari, J., Schipper, D.J., 2006. An elastic-plastic contact model of ellipsoid bodies. Tribology Letters, 21(3):262–271. [doi:10.1007/s11249-006-9038-3]

    Article  Google Scholar 

  • Jamari, J., Schipper, D.J., 2007. Plastic deformation and contact area of an elastic-plastic contact of ellipsoid bodies after unloading. Tribology International, 40(8):1311–1318. [doi:10.1016/j.triboint.2007.02.015]

    Article  Google Scholar 

  • Johnson, K.L., 1985. Contact Mechanics. Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • Jones, A.B., 1952. The life of high-speed ball bearings. Transactions of the ASME, 74(5):695–703.

    Google Scholar 

  • Kogut, L., Etsion, I., 2002. Elastic-plastic contact analysis of a sphere and a rigid flat. Journal of Applied Mechanics, Transactions of the ASME, 69(5):657–662. [doi:10.1115/1.1490373]

    Article  MATH  Google Scholar 

  • Lamon, P., Krebs, A., Lauria, M., Siegwart, R., Shooter, S., 2004. Wheel Torque Control for a Rough Terrain Rover. Proceedings of IEEE International Conference on Robotics and Automation, 5:4682–4687. [doi:10.1109/ROBOT.2004.1302456]

    Google Scholar 

  • Poritsky, H., Hewlett, C.W.Jr., Coleman, R.E.Jr., 1947. Sliding friction of ball bearings of the pivot type. Journal of Applied Mechanics, Transactions of the ASME, 14(4):261–268.

    Google Scholar 

  • Samper, V.D., Sangster, A.J., Reuben, R.L., Wallrabe, U., 1999. Torque evaluation of a LIGA fabricated electrostatic micromotor. Journal of Microelectromechanical Systems, 8(1):115–123. [doi:10.1109/84.749410]

    Article  Google Scholar 

  • Shan, X.B., Tie, T., Chen, W.S., 2007a. Novel approach for determining the optimal axial preload of a simulating rotary table spindle system. Journal of Zhejiang University-SCIENCE A, 8(5):812–817. [doi:10.1631/2009.2007.A0812]

    Article  MATH  Google Scholar 

  • Shan, X.B., Xie, T., Chen, W.S., 2007b. A new method for determining the preload in a wire race ball bearing. Tribology International, 40(5):869–875. [doi:10.1016/j.triboint.2006.09.003]

    Article  Google Scholar 

  • Shi, J., 2004. Design of the wire race ball bearing in a mini photoelectric search equipment. Electronic and Electrooptical System, 2:33–35 (in Chinese).

    Google Scholar 

  • Williams, J., 2005. The influence of repeated loading, residual stresses and shakedown on the behaviour of tribological contacts. Tribology International, 38(9):786–797. [doi:10.1016/j.triboint.2005.02.006]

    Article  Google Scholar 

  • Willner, K., 2004. Elasto-plastic normal contact of three-dimensional fractal surfaces using halfspace theory. Journal of Tribology, Transactions of the ASME, 126(1): 28–33. [doi:10.1115/1.1631019]

    Article  Google Scholar 

  • Zhu, H.P., Yu, A.B., 2003. The effects of wall and rolling resistance on the couple stress of granular materials in vertical flow. Physica A: Statistical Mechanics and Its Applications, 325(3–4):347–360. [doi:10.1016/S0378-4371(03)00143-2]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xie.

Additional information

Project supported by the National Natural Science Foundation of China (No. 50905039), and the Natural Science Foundation of Heilongjiang Province (No. E200924), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shan, Xb., Wang, Ll., Xie, T. et al. A simple approach for determining the preload of a wire race ball bearing. J. Zhejiang Univ. Sci. A 11, 511–519 (2010). https://doi.org/10.1631/jzus.A0900583

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900583

Key words

CLC number

Navigation