Skip to main content
Log in

Optimal velocity functions for car-following models

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The integral part of the optimal velocity car-following models is the optimal velocity function (OVF), which can be derived from measured velocity-spacing data. This paper discusses several characteristics of the OVF and presents regression analysis on two classical datasets, the Lincoln and Holland tunnels, with different possible OVFs. The numerical simulation of the formation of traffic congestion is conducted with three different heuristic OVFs, demonstrating that these functions give results similar to those of the famous Bando OVF (Bando et al., 1995). Also an alternative method is present for determining the sensitivity and model parameters based on a single car driving to a fixed barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bando, M., Hasabe, K., Nakayama, A., Shibata, A., Sugiyama, Y., 1995. Dynamical model of traffic congestion and numerical simulation. Physical Review E, 51(2):1035–1042. [doi:10.1103/PhysRevE.51.1035]

    Article  Google Scholar 

  • Batista, M., 2000. Numerical Simulation of Traffic Congestion. International Conference on Traffic Science. Portorož, Slovenia, p.361–367.

  • Brackstone, M., McDonald, M., 2000. Car following: a historical review. Transportation Research Part F, 2(4):181–196. [doi:10.1016/S1369-8478(00)00005-X]

    Article  Google Scholar 

  • Daganzo, C.F., 2003. Fundamentals of Transportation and Traffic Operations. Science Ltd., USA.

    Google Scholar 

  • Davis, L.C., 2003. Modifications of the optimal velocity traffic model to include delay due to driver reaction time. Physica A: Statistical Mechanics and its Applications, 319(1):557–567. [doi:10.1016/S0378-4371(02)01457-7]

    Article  MATH  Google Scholar 

  • Del Castillo, J.M., Benitez, F.G., 1995a. On the functional form of the speed-density relationship—I: general theory. Transportation Research Part B: Methodological, 29(5): 373–389. [doi:10.1016/0191-2615(95)00008-2]

    Article  Google Scholar 

  • Del Castillo, J.M., Benitez, F.G., 1995b. On the functional form of the speed-density relationship—II: empirical investigation. Transportation Research Part B: Methodological, 29(5):391–406. [doi:10.1016/0191-2615(95)00009-3]

    Article  Google Scholar 

  • Edie, L.C., 1961. Car-following and steadystate theory for noncongested traffic. Operations Research, 9(1):66–76. [doi:10.1287/opre.9.1.66]

    Article  MathSciNet  MATH  Google Scholar 

  • Gasser, S.G., Werner, B., 2004. Bifurcation analysis of a class of ‘car following’ traffic models. Physica D: Nonlinear Phenomena, 197(3–4): 222–241. [doi:10.1016/j.physd.2004.07.008]

    Article  MathSciNet  MATH  Google Scholar 

  • Helbing, D., Tilch, B., 1998. Generalized force model of traffic dynamics. Physical Review E, 58(1):133–138. [doi:10. 1103/PhysRevE.58.133]

    Article  Google Scholar 

  • Holland, E.N., 1998. A generalized stability criterion for motorway traffic. Transportation Research Part B: Methodological, 32(1):141–154. [doi:10.1103/PhysRevE.58. 133]

    Article  Google Scholar 

  • Jiang, R., Wu, Q., Zhu, Z., 2001. Full velocity difference model for car-following theory. Physical Review E, 64(1): 017101. [doi:10.1103/PhysRevE.64.017101]

    Article  Google Scholar 

  • Kerner, B.S., Konhauser, P., 1993. Cluster effect in initially homogeneous traffic flow. Physical Review E, 48(4):R2335–R2338. [doi:10.1103/PhysRevE.48.R2335]

    Article  Google Scholar 

  • Kesting, A., Treiber, M., 2009. Calibration of Car-following Models Using Floating Car Data. In: Traffic and Granular Flow’07. Springer, Berlin, Germany. [doi:10.1007/978-3-540-77074-9_10]

    Google Scholar 

  • Li, L., Shi, P., 2006. Numerical analysis on car-following traffic flow models with Delay Time. Journal of Zhejiang University-SCIENCE A, 7(2):204–209. [doi:10.1631/2009.2006.A0204]

    Article  MATH  Google Scholar 

  • May, A.D., 1990. Traffic Flow Fundamentals. Prentice-Hall, New York, USA.

    Google Scholar 

  • Nakanishi, K., Itoh, K., Igarashi, Y., Bando, M., 1997. Solvable optimal velocity models and asymptotic trajectory. Physical Review E, 55(6):6519–6532. [doi:10.1103/PhysRevE.55.6519]

    Article  Google Scholar 

  • Newell, G.F., 1961. Nonlinear effects in the dynamics of car following. Operations Research, 9(2):209–229. [doi:10.1287/opre.9.2.209]

    Article  MathSciNet  MATH  Google Scholar 

  • Orosz, G., Wilson, R.E., Krauskopf, B., 2004. Global bifurcation investigation of an optimal velocity traffic model with driver reaction time. Physical Review E, 70(2): 026207. [doi:10.1103/PhysRevE.70.026207]

    Article  MathSciNet  Google Scholar 

  • Orosz, G., Krauskopf, B., Wilson, R.E., 2005. Bifurcations and multiple traffic jams in a car-following model with reaction-time delay. Physica D: Nonlinear Phenomena, 211(3–4):277–293. [doi:10.1016/j.physd.2005.09.004]

    Article  MathSciNet  MATH  Google Scholar 

  • Rajamani, R., 2006. Vehicle Dynamics and Control. Springer, New York, USA.

    MATH  Google Scholar 

  • Rothery, R.W., 1997. Car Following Models. In: Monograph on Traffic Flow Theory. Available from http://www.tfhrc.gov/its/tft/tft.htm.

  • Tadaki, S., Kikuchi, M., Sugiyama, Y., Yukawa, S., 1999. Noise induced congested traffic flow in coupled map optimal velocity model. Journal of Physical Society of Japan, 68(9):3110–3114. [doi:10.1143/JPSJ.68.3110]

    Article  Google Scholar 

  • Weng, Y., Wu, T., 2002. Car-following models of vehicular traffic. Journal of Zhejiang University-SCIENCE A, 3(4):412–417. [doi:10.1631/2009.2002.0412]

    Article  Google Scholar 

  • Wilson, R.E., 2008. Mechanisms for spatio-temporal pattern formation in highway traffc models. Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, 366:2017–2032. [doi:10.1098/rsta.2008.0018]

    Article  MATH  Google Scholar 

  • Zhao, X., Gao, Z., 2005. A new car-following model: full velocity and acceleration difference model. The European Physical Journal B, 47(1):145–150. [doi:10.1140/epjb/e2005-00304-3]

    Article  Google Scholar 

  • Zhu, W., Liu, Y., 2008. A total generalized optimal velocity model and its numerical tests. Journal of Shanghai Jiaotong University (Science), 13(2):166–170. [doi:10.1007/s12204-008-0166-9]

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Batista.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batista, M., Twrdy, E. Optimal velocity functions for car-following models. J. Zhejiang Univ. Sci. A 11, 520–529 (2010). https://doi.org/10.1631/jzus.A0900370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900370

Key words

CLC number

Navigation