Skip to main content
Log in

A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction

  • Published:
Journal of Zhejiang University SCIENCE A Aims and scope Submit manuscript

Abstract

Feature extraction from vibration signals has been investigated extensively over the past decades as a key issue in machine condition monitoring and fault diagnosis. Most existing methods, however, assume a linear model of the underlying dynamics. In this study, the feasibility of devoting nonlinear dynamic parameters to characterizing bearing vibrations is studied. Firstly, fuzzy sample entropy (FSampEn) is formulated by defining a fuzzy membership function with clear physical meaning. Secondly, inspired by the multiscale sample entropy (multiscale SampEn) which is originally proposed to quantify the complexity of physiological time series, we placed approximate entropy (ApEn), fuzzy approximate entropy (FApEn) and the proposed FSampEn into the same multiscale framework. This led to the developments of multiscale ApEn, multiscale FApEn and multiscale FSampEn. Finally, all four multiscale entropies along with their single-scale counterparts were employed to extract discriminating features from bearing vibration signals, and their classification performance was evaluated using support vector machines (SVMs). Experimental results demonstrated that all four multiscale entropies outperformed single-scale ones, whilst multiscale FSampEn was superior to other multiscale methods, especially when analyzed signals were contaminated by heavy noise. Comparisons with statistical features in time domain also support the use of multiscale FSampEn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbasion, S., Rafsanjani, A., Farshidianfar, A., Irani, N., 2007. Rolling element bearings multi-fault classification based on the wavelet denoising and support vector machine. Mechanical Systems and Signal Processing, 21(7): 2933–2945. [doi:10.1016/j.ymssp.2007.02.003]

    Article  Google Scholar 

  • Chen, W., Wang, Z., Ren, X., 2006. Characterization of surface EMG signals using improved approximate entropy. Journal of Zhejiang University-SCIENCE B, 7(10):844–848. [doi:10.1631/jzus.2006.B0844]

    Article  Google Scholar 

  • Chen, W., Zhuang, J., Yu, W., Wang, Z., 2009. Measuring complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1):61–68. [doi:10.1016/j.medengphy.2008.04.005]

    Article  Google Scholar 

  • Costa, M., Goldberger, A.L., Peng, C.K., 2002. Multiscale entropy analysis of complex physiologic time series. Physical Review Letters, 89(6):068102. [doi:10.1103/PhysRevLett.89.068102]

    Article  Google Scholar 

  • Costa, M., Goldberger, A.L., Peng, C.K., 2005. Multiscale entropy analysis of biological signals. Physical Review E, 71(2):021906. [doi:10.1103/PhysRevE.71.021906]

    Article  MathSciNet  Google Scholar 

  • Escudero, J., Abasolo, D., Hornero, R., Espino, P., Lopez, M., 2006. Analysis of electroencephalograms in Alzheimer’s disease patients with multiscale entropy. Physiological Measurement, 27(11):1091–1106. [doi:10.1088/0967-3334/27/11/004]

    Article  Google Scholar 

  • Fan, X.F., Liang, M., Yeap, T.H., Kind, B., 2007. A joint wavelet lifting and independent component analysis approach to fault detection of rolling element bearings. Smart Materials & Structures, 16(5):1973–1987. [doi:10.1088/0964-1726/16/5/056]

    Article  Google Scholar 

  • Hsu, C., Chang, C., Lin, C., 2009. A Practical Guide to Support Vector Classification. Available from http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf [Accessed on May 20, 2009].

  • Hu, Z., Cai, Y., Li, Y., Xu, X., 2005. Data fusion for fault diagnosis using multi-class Support Vector Machines. Journal of Zhejiang University-SCIENCE A, 6(10):1030–1039. [doi:10.1631/jzus.2005.A1030]

    Article  Google Scholar 

  • Jiang, J.D., Chen, J., Qu, L.S., 1999. The application of correlation dimension in gearbox condition monitoring. Journal of Sound and Vibration, 223(4):529–541. [doi:10.1006/jsvi.1998.2161]

    Article  Google Scholar 

  • Jiang, Z., Fu, H.G., Li, L.J., 2005. Support Vector Machine for mechanical faults classification. Journal of Zhejiang University-SCIENCE A, 6(5):433–439. [doi:10.1631/jzus.2005.A0433]

    Article  Google Scholar 

  • Kaffashi, F., Foglyano, R., Wilson, C.G., Loparo, K.A., 2008. The effect of time delay on Approximate & Sample Entropy calculations. Physica D Nonlinear Phenomena, 237(23):3069–3074. [doi:10.1016/j.physd.200 8.06.005]

    Article  MATH  MathSciNet  Google Scholar 

  • Li, Z.W., Zhang, Y.K., 2008. Multi-scale entropy analysis of Mississippi river flow. Stochastic Environmental Research and Risk Assessment, 22(4):507–512. [doi:10.1007/s00477-007-0161-y]

    Article  MATH  MathSciNet  Google Scholar 

  • Li, Z.Y., Wu, W.L., 2008. Classification of power quality combined disturbances based on phase space reconstruction and support vector machines. Journal of Zhejiang University-SCIENCE A, 9(2):173–181. [doi:10.1631/jzus.A071261]

    Article  MATH  Google Scholar 

  • Liao, F.Y., Wang, J., He, P., 2008. Multi-resolution entropy analysis of gait symmetry in neurological degenerative diseases and amyotrophic lateral sclerosis. Medical Engineering & Physics, 30(3):299–310. [doi:10.1016/j. medengphy.2007.04.014]

    Article  Google Scholar 

  • Logan, D., Mathew, J., 1996. Using the correlation dimension for vibration fault diagnosis of rolling element bearing-I. basic concepts. Mechanical Systems and Signal Processing, 10(3):241–250. [doi:10.1006/mssp.1996.0018]

    Article  Google Scholar 

  • Loparo, K.A., 2005. Bearing Vibration Data: Case Western Reserve University Bearing Data Center Website. Available from http://www.eecs.case.edu/laboratory/bearing/welcome_overview.htm [Accessed on June 23, 2008].

  • Lou, X.S., Loparo, K.A., 2004. Bearing fault diagnosis based on wavelet transform and fuzzy inference. Mechanical Systems and Signal Processing, 18(5):1077–1095. [doi:10.1016/S0888-3270(03)00077-3]

    Article  Google Scholar 

  • Nguyen, N.T., Lee, H.H., Kwon, J.M., 2008. Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor. Journal of Mechanical Science and Technology, 22(3):490–496. [doi:10.1007/s12206-007-1036-3]

    Article  Google Scholar 

  • Pincus, S.M., 1991. Approximate entropy as a measure of system complexity. Proceedings of the National Academy of Sciences USA, 88(6):2297–2301. [doi:10.1073/pnas.88.6.2297]

    Article  MATH  MathSciNet  Google Scholar 

  • Richman, J.S., Moorman, J.R., 2000. Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6):H2039–H2049.

    Google Scholar 

  • Wang, J., Ma, Q.L., 2008. Multiscale entropy based study of the pathological time series. Chinese Physics B, 17(12):4424–4427. [doi:10.1088/1674-1056/17/12/015]

    Article  Google Scholar 

  • Wang, W.J., Chen, J., Wu, X.K., Wu, Z.T., 2001. The application of some non-linear methods in rotating machinery fault diagnosis. Mechanical Systems and Signal Processing, 15(4):697–705. [doi:10.1006/mssp.2000.1316]

    Article  Google Scholar 

  • Widodo, A., Yang, B.S., 2008. Wavelet support vector machine for induction machine fault diagnosis based on transient current signal. Expert Systems with Applications, 35(3):307–316. [doi:10.1016/j.eswa.2007.06.018]

    Article  Google Scholar 

  • Xu, Y.G., Li, L.J., He, Z.J., 2002. Approximate entropy and its applications in mechanical fault diagnosis. Information and Control, 31(6):547–551 (in Chinese).

    Google Scholar 

  • Yan, R.Q., Gao, R.X., 2007. Approximate Entropy as a diagnostic tool for machine health monitoring. Mechanical Systems and Signal Processing, 21(2):824–839. [doi:10.1016/j.ymssp.2006.02.009]

    Article  Google Scholar 

  • Yan, Z.G., Wang, Z.Z., Ren, X.M., 2007. Joint application of feature extraction based on EMD-AR strategy and multi-class classifier based on LS-SVM in EMG motion classification. Journal of Zhejiang University-SCIENCE A, 8 (8):1246–1255. [doi:10.1631/jzus.2007A1246]

    Article  MATH  Google Scholar 

  • Yuan, S.F., Chu, F.L., 2006. Support vector machines-based fault diagnosis for turbo-pump rotor. Mechanical Systems and Signal Processing, 20(4):939–952. [doi:10.1016/j.ymssp.2005.09.006]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-liang Xiong.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 50875161 and 50821003), and the Natural Science Foundation of Jiangxi Province, China (No. 0450017)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiong, Gl., Zhang, L., Liu, Hs. et al. A comparative study on ApEn, SampEn and their fuzzy counterparts in a multiscale framework for feature extraction. J. Zhejiang Univ. Sci. A 11, 270–279 (2010). https://doi.org/10.1631/jzus.A0900360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900360

Key words

CLC number

Navigation