Skip to main content
Log in

Effects of rarefaction on the characteristics of micro gas journal bearings

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Given the definition of the reference Knudsen number for micro gas journal bearings, the range in the number is related to the viscosity of air at different temperatures. A modified Reynolds equation for micro gas journal bearings based on Burgdorfer’s first-order slip boundary condition is proposed that takes into account the gas rarefaction effect. The finite difference method (FDM) is adopted to solve the modified Reynolds equation to obtain the pressure profiles, load capacities and attitude angles for micro gas journal bearings at different reference Knudsen numbers, bearing numbers and journal eccentricity ratios. Numerical analysis shows that pressure profiles and non-dimensional load capacities decrease markedly as gas rarefaction increases. Attitude angles change conversely, and when the eccentricity ratio is less than 0.6, the attitude angles rise slightly and the influence of the reference Knudsen number is not marked. In addition, the effect of gas rarefaction on the non-dimensional load capacity and attitude angle decreases with smaller bearing numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beskok, A., Karniadakis, G.E., 1999. A model for flows in channels, pipes and ducts at micro and nano-scales. Nanoscale and Microscale Thermophysical Engineering, 3(1):43–77. [doi:10.1080/108939599199864]

    Article  Google Scholar 

  • Burgdorfer, A., 1959. The influence of the molecular mean free path on the performance of hydrodynamic gas lubricated bearings. Journal of Basic Engineering, 81(1):94–100.

    Google Scholar 

  • Gad-el-Hak, M., 1999. The fluid mechanics of microdevices—the freeman scholar lecture. Journal of Fluids Engineering, 121(1):5–33. [doi:10.1115/1.2822013]

    Article  Google Scholar 

  • Hsia, Y.T., Domoto, G.A., 1983. An experimental investigation of molecular rarefaction effects in gas lubricated bearings at ultra-low clearances. Journal of Lubrication Technology, 105(1):120–130.

    Article  Google Scholar 

  • Huang, H., Meng, G.., Zhao, S., 2006. The effects of second-order slip flow on the steady performance of micro gas bearings. Chinese Journal of Theoretical and Applied Mechanics, 38(5):68–673 (in Chinese).

    Google Scholar 

  • Irvine, T.F., Liley, P.E., 1984. Steam and Gas Tables with Computer Equations. Academic Press, Orlando.

    Google Scholar 

  • Karniadakis, G.E., Beskok, A., 2005. Micro Flow Fundamentals and Simulation. Springer-Verlag, New York, USA.

    MATH  Google Scholar 

  • Kennard, E.H., 1938. Kinetic Theory of Gases. McGraw-Hill, New York, USA.

    Google Scholar 

  • Lee, Y., Kwak, H., Kim, C., Lee, N., 2005. Numerical prediction of slip flow effect on gas-lubricated journal bearings for MEMS/MST-based micro-rotating machinery. Tribology International, 38:89–96. [doi:10.1016/j.triboint.2004.01.003]

    Article  Google Scholar 

  • Liu, L.X., Teo, C.J., Epstein, A.H., Spakovszky, Z.S., 2005. Hydrostatic gas journal bearings for microturbomachinery. Journal of Vibration and Acoustics, 127(2):157–164. [doi:10.1115/1.1897738]

    Article  Google Scholar 

  • Liu, L.X., Spakovszky, Z.S., 2007. Effects of bearing stiffness anisotropy on hydrostatic micro gas journal bearing dynamic behavior. Journal of Engineering for Gas Turbines and Power, 129(1):177–184. [doi:10.1115/1.2180813]

    Article  Google Scholar 

  • Mitsuya, Y., 1993. Modified Reynolds equation for ultra-thin film gas lubrication using 1.5-order slip flow model and considering surface accommodation coefficient. Journal of Tribology, 115:289–294. [doi:10.1115/1.2921004]

    Article  Google Scholar 

  • Myong, R.S., 2004. Gas slip models based on the Langmuir adsorption isotherm. Physics of Fluids, 16(1):104–117. [doi:10.1063/1.1630799]

    Article  MATH  Google Scholar 

  • Orr, D.J., 2000. Macroscale Investigation of High Speed Gas Bearing for MEMS Devices. PhD Thesis, Massachusettes Institute of Technology, USA.

    Google Scholar 

  • Piekos, E.S., Breuer, K.S., 1999. Pseudospectral orbit simulation of nonideal gas-lubricated journal bearings for microfabricated turbomachines. Journal of Tribology, 121(3):604–609. [doi:10.1115/1.2834110]

    Article  Google Scholar 

  • Piekos, E.S., Breuer, K.S., 2002. Manufacturing effects in microfabricated gas bearings: axially varying clearance. Journal of Tribology, 124(4):815–821. [doi:10.1115/1.1430672]

    Article  Google Scholar 

  • Schaaf, S.A., Chambre, P.L., 1958. Flow of Rarefied Gas, Part H of Fundamentals of Gas Dynamics. Princeton University Press, USA.

    Google Scholar 

  • Shen, Q., 2003. Rarefied Gas Dynamics. National Defense Industry Press, Beijing, China (in Chinese).

    Google Scholar 

  • Shen, S., Chen, G., Crone, R.M., Anaya-Dufresne, M., 2007. A kinetic-theory based first order slip boundary condition for gas flow. Physics of Fluids, 19:086101. [doi:10.1063/1.2754373]

    Article  MATH  Google Scholar 

  • Sun, Y.H., Chan, W.K., Liu, N., 2002. A slip model with molecular dynamics. Journal of Micromechanics and Microengineering, 12(3):316–322. [doi:10.1088/0960-1317/12/3/318]

    Article  Google Scholar 

  • Teo, C.J., Liu, L.X., Li, H.Q., Ho, L.C., Jacobson, S.A., Ehrich, F.F., Epstein, A.H., Spakovszky, Z.S., 2006. High-speed Operation of a Gas-bearing Supported MEMS Air Turbine. Proceedings of the STLE/ASME International Joint Tribology Conference, San Antonio, Texas, USA, p.1303–1314. [doi:10.1115/IJTC2006-12173]

  • Teo, C.J., Spakovszky, Z.S., Jacobson, S.A., 2008. Unsteady flow and dynamic behavior of ultrashort Lomakin gas bearings. Journal of Tribology, 130(1):011001. [doi:10.1115/1.2805403]

    Article  Google Scholar 

  • Wu, L., Bogy, D.B., 2003. New first and second order slip models for the compressible Reynolds equations. Journal of Tribology, 125:558–561. [doi:10.1115/1.1538620]

    Article  Google Scholar 

  • Wu, L., 2008. A slip model for rarefied gas flows at arbitrary Knudsen number. Applied Physics Letters, 93:253103. [doi:10.1063/1.3052923]

    Article  Google Scholar 

  • Zhou, J., Meng, G., Zhang, W., 2007. Characteristics of micro gas journal bearings. Journal of Vibration and Shock, 26(9):30–33 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-sheng Zhu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 10472101), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20070335184)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Hj., Zhu, Cs. & Tang, M. Effects of rarefaction on the characteristics of micro gas journal bearings. J. Zhejiang Univ. Sci. A 11, 43–49 (2010). https://doi.org/10.1631/jzus.A0900141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0900141

Key words

CLC number

Navigation