Skip to main content
Log in

A novel restricted-flow etching method for glass

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper presents a novel micro fabrication method based on the laminar characteristics of micro-scale flows. Therein the separator and etchant are alternatively arranged in micro channels to form multiple laminar streams, and the etchant is located at the site where the reaction is supposed to occur. This new micro fabrication process can be used for the high aspect ratio etching inside a microchannel on glass substrates. Furthermore, the topography of microstructure patterned by this method can be controlled by changing the flow parameters of the separator and etchant. Experiments on the effects of flow parameters on the aspect ratio, side wall profile and etching rate were carried out on a glass substrate. The effect of flow rates on the etching rate and the micro topography was analyzed. In addition, experiments with dynamical changes of the flow rate ratio of the separator and etchant showed that the verticality of the side walls of microstructures can be significantly improved. The restricted flowing etching technique not only abates the isotropic effect in the traditional wet etching but also significantly reduces the dependence on expensive photolithographic equipment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atencia, J., Beebe, D.J., 2005. Controlled microfluidic interfaces. Nature, 437(7059):648–655. [doi:10.1038/nature04163]

    Article  Google Scholar 

  • Dittrich, P.S., Tachikawa, K., Manz, A., 2006. Micro total analysis systems. Latest advancements and trends. Analytical Chemistry, 78(12):3887–3908. [doi:10.1021/ac0605602]

    Article  Google Scholar 

  • Fu, X., Liu, S.F., Ruan, X.D., Yang, H.Y., 2006. Research on staggered oriented ridges static micromixers. Sensors and Actuators B: Chemical, 114(2):618–624. [doi:10.1016/j.snb.2005.06.023]

    Article  Google Scholar 

  • Geissler, M., Xia, Y., 2004. Patterning: Principles and some new developments. Advanced Materials, 16(15):1249–1269. [doi:10.1002/adma.200400835]

    Article  Google Scholar 

  • Howlader, M.M.R., Suehara, S., Suga, T., 2006. Room temperature wafer level glass/glass bonding. Sensors and Actuators A: Physical, 127(1):31–36. [doi:10.1016/j.sna.2005.11.003]

    Article  Google Scholar 

  • Kenis, P.J.A., Ismagilov, R.F., Whitesides, G.M., 1999. Microfabrication inside capillaries using multiphase laminar flow patterning. Science, 285(5424):83–85. [doi:10.1126/science.285.5424.83]

    Article  Google Scholar 

  • Kenis, P.J.A., Ismagilov, R.F., Takayama, S., Whitesides, G.M., 2000. Fabrication inside microchannels using fluid flow. Accounts of Chemical Research, 33(12):841–847. [doi:10.1021/ar000062u]

    Article  Google Scholar 

  • Khademhosseini, A., Suh, K.Y., Jon, S., 2004. A soft lithographic approach to fabricate patterned microfluidic channels. Analytical Chemistry, 76(13):3675–3681. [doi:10.1021/ac035415s]

    Article  Google Scholar 

  • Kim, K., Par, S., Lee, J.B., Manohara, H., Desta, Y., Murphy, M., Ahn, C.H., 2002. Rapid replication of polymeric and metallic high aspect ratio microstructures using PDMS and LIGA technology. Microsystem Technologies, 9(1–2):5–10. [doi:10.1007/s00542-002-0194-6]

    Article  Google Scholar 

  • Lee, G.B., Kuo, T.Y., Wu, W.Y., 2002. A novel micromachined flow sensor using periodic flapping motion of a planar jet impinging on a V-shaped plate. Experimental Thermal and Fluid Science, 26(5):435–444. [doi:10.1016/S0894-1777(02)00155-3]

    Article  Google Scholar 

  • Lee, G.B., Chang, C.C., Huang, S.B., Yang, R.J., 2006. The hydrodynamic focusing effect inside rectangular microchannels. Journal of Micromechanics and Microengineering, 16(5):1024–1032. [doi:10.1088/0960-1317/16/5/020]

    Article  Google Scholar 

  • Malek, C.K., Saile, V., 2004. Applications of LIGA technology to precision manufacturing of high-aspect-ratio microcomponents and systems. Microelectronics Journal, 35(2):131–143. [doi:10.1016/j.mejo.2003.10.003]

    Article  Google Scholar 

  • Manz, A., Harrison, D.J., Verpoorte, E.M.J., 1992. An international journal devoted to research and development of chemical transducers. Journal of Chromatography A, 593(1–2):253–258. [doi:10.1016/0021-9673(92)80293-4]

    Article  Google Scholar 

  • Paul, K.E., Breen, T.L., Hadzik, T., Whitesidesa, G.M., 2005. Imaging patterns of intensity in topographically directed photolithography. Journal of Vacuum Science & Technology B, 23(3):918–925. [doi:10.1116/1.1924415]

    Article  Google Scholar 

  • Stroock, A.D., Whitesides, G.M., 2003. Controlling flows in microchannels with patterned surface charge and topography. Accounts of Chemical Research, 36(8):597–604. [doi:10.1021/ar0202870]

    Article  Google Scholar 

  • Urbanski, J.P., Thies, W., Rhodes, C., Amarasinghe, S., 2006. Digital microfluidics using soft lithography. Lab on a Chip, 6(1):96–104. [doi:10.1039/b510127a]

    Article  Google Scholar 

  • Verpoorte, E., Rooij, N.F.D., 2003. Microfluidics meets MEMS. Proceedings of the IEEE, 91(6):930–953. [doi:10.1109/JPROC.2003.813570]

    Article  Google Scholar 

  • Weibel, D.B., Whitesides, G.M., 2006. Applications of microfluidics in chemical biology. Current Opinion in Chemical Biology, 10(6):584–591. [doi:10.1016/j.cbpa.2006.10.016]

    Article  Google Scholar 

  • Whitesides, G.M., 2006. The origins and the future of microfluidics. Nature, 442(7101):368–373. [doi:10.1038/nature05058]

    Article  Google Scholar 

  • Wouden, E.J.V., Heuser, T., Hermes, D.C., Oosterbroek, R.E., Gardeniers, J.G.E., Berg, A.V., 2005. Field-effect control of electro-osmotic flow in microfluidic networks. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 267(1–3):110–116. [doi:10.1016/j.colsurfa.2005.06.048]

    Article  Google Scholar 

  • Yoon, S.K., Mitchell, M., Chobanb, E.R., Kenis, P.J.A., 2005. Gravity-induced reorientation of the interface between two liquids of different densities flowing laminarly through a microchannel. Lab on a Chip, 5(11):1259–1263. [doi:10.1039/b508680a]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Zheng.

Additional information

Project (No. 50705081) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Hb., Zheng, Y., Fan, Yr. et al. A novel restricted-flow etching method for glass. J. Zhejiang Univ. Sci. A 10, 1601–1608 (2009). https://doi.org/10.1631/jzus.A0820818

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820818

Key words

CLC number

Navigation