Skip to main content
Log in

Equality detection for linear arithmetic constraints

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Satisfiability modulo theories (SMT) play a key role in verification applications. A crucial SMT problem is to combine separate theory solvers for the union of theories. In previous work, the simplex method is used to determine the solvability of constraint systems and the equalities implied by constraint systems are detected by a multitude of applications of the dual simplex method. We present an effective simplex tableau-based method to identify all implicit equalities such that the simplex method is harnessed to an irreducible minimum. Experimental results show that the method is feasible and effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barrett, C., Berezin, S., 2004. CVC Lite: a new implementation of the cooperating validity checker. LNCS, 3114:515–518.

    MATH  Google Scholar 

  • Barrett, C., Dill, D., Levitt, J., 1996. Validity checking for combinations of theories with equality. LNCS, 1166:187–201. [doi:10.1007/BFb0031808]

    Google Scholar 

  • Barrett, C., de Moura, L., Stump, A., 2005. SMT-COMP: satisfiability modulo theories competition. LNCS, 3576: 20–23. [doi:10.1007/11513988_4]

    MATH  Google Scholar 

  • Bozzano, M., Bruttomesso, R., Cimatti, A., Junttila, T., Rossum, P.V., Schulz, S., Sebastiani, R., 2005. The MathSAT 3 System. LNCS, 3632:315–321. [doi:10.1007/11532231_23]

    MATH  Google Scholar 

  • Chvatal, V., 1983. Linear Programming. Springer-Verlag New York, LLC, p.34–45.

    MATH  Google Scholar 

  • Dantzig, G.B., 1973. Fourier-Motzkin elimination and its dual. J. Comb. Theory Ser. A, 14(3):288–297. [doi:10.1016/0097-3165(73)90004-6]

    Article  MathSciNet  MATH  Google Scholar 

  • Detlefs, D., Nelson, G., Saxe, J.B., 2005. Simplify: a theorem prover for program checking. J. ACM, 52(3):365–473. [doi:10.1145/1066100.1066102]

    Article  MathSciNet  MATH  Google Scholar 

  • Dutertre, B., de Moura, L., 2006. A fast linear-arithmetic solver for DPLL(T). LNCS, 4144:81–94. [doi:10.1007/11817963_11]

    MathSciNet  Google Scholar 

  • Filliatre, J.C., Owre, S., Rueb, H., Shankar, N., 2001. ICS: Integrated Canonization and Solving. Int. Conf. on Computer Aided Verification, p.246–249.

  • Kroening, D., Strichman, O., 2008. Decision Procedures: An Algorithmic Point of View. Springer-Verlag New York Inc., p.113–122.

    MATH  Google Scholar 

  • Lassez, J.L., McAloon, K., 1992. A canonical form for generalized linear constraints. J. Symb. Comput., 13(1):1–24. [doi:10.1016/0747-7171(92)90002-L]

    Article  MathSciNet  MATH  Google Scholar 

  • McMillan, K.L., 2004. An Interpolating Theorem Prover. TACAS 2004: Tools and Algorithms for Construction and Analysis of Systems, p.102–121.

  • Nelson, G., 1981. Techniques for Program Verification. Technical Report, CSL-81-10, Xerox Palo Alto Research Center, Palo Alto, CA.

    Google Scholar 

  • Nieuwenhuis, R., Oliveras, A., 2005. DPLL(T) with Exhaustive Theory Propagation and Its Application to Difference Logic. Int. Conf. on Computer Aided Verification, p.321–324.

  • Refalo, P., 1998. Approaches to the Incremental Detection of Implicit Equalities with the Revised Simplex Method. Proc. 10th Int. Symp. on Principles of Declarative Programming, p.481–496. [doi:10.1007/BFb0056634]

  • Rueß, H., Shankar, N., 2004. Solving Linear Arithmetic Constraints. Technical Report, CSL-SRI-04-01, SRI International, Menlo Park, CA, USA.

    Google Scholar 

  • Sheini, H.M., Sakallah, K.A., 2005. A scalable method for solving satisfiability of integer linear arithmetic logic. LNCS, 3569:241–256. [doi:10.1007/11499107_18]

    MATH  Google Scholar 

  • Stuckey, P.J., 1991. Incremental linear constraint solving and detection of implicit equalities. ORSA J. Comput., 3(4): 269–271.

    Article  MATH  Google Scholar 

  • Stump, A., Barrett, C.W., Dill, D.L., 2002. CVC: a cooperating validity checker. LNCS, 2404:500–504. [doi:10.1007/3-540-45657-0_40]

    MATH  Google Scholar 

  • Vanderbei, R.J., 2001. Linear Programming: Foundations and Extensions (2nd Ed.). Springer-Verlag New York, LLC, p.16–22.

    Book  MATH  Google Scholar 

  • Wang, C., Ivancic, F., Ganai, M., Gupta, A., 2005. Deciding separation logic formulae by SAT and incremental negative cycle elimination. LNCS, 3835:322–336. [doi:10.1007/11591191_23]

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Li.

Additional information

Project supported by the National Natural Science Foundation of China (Nos. 60635020 and 90718039) and the National Basic Research Program (973) of China (No. 2004CB719406)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., He, Kd., Gu, M. et al. Equality detection for linear arithmetic constraints. J. Zhejiang Univ. Sci. A 10, 1784–1789 (2009). https://doi.org/10.1631/jzus.A0820812

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820812

Key words

CLC number

Navigation