Skip to main content
Log in

Efficient design of rotary traveling wave oscillator array via geometric programming

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper presents an efficient method for globally optimizing and automating component sizing for rotary traveling wave oscillator arrays. The lumped equivalent model of transmission lines loaded by inverter pairs is evaluated and posynomial functions for oscillation frequency, power dissipation, phase noise, etc. are formulated using transmission line theory. The resulting design problem can be posed as a geometric programming problem, which can be efficiently solved with a convex optimization solver. The proposed method can compute the global optima more efficiently than the traditional iterative scheme and various design problems can be solved with the same circuit model. The globally optimal trade-off curves between competing objectives are also computed to carry out robust designs and quickly explore the design space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boyd, S., Kim, S., Vandenberghez, L., Hassibi, A., 2006. A Tutorial on Geometric Programming. Available from http://www.stanford.edu/~boyd/gp_tutorial.html [Accessed on Dec. 9, 2007].

  • Delorme, N., Belleville, M., Chilo, J., 1996. Inductance and capacitance analytic formulas for VLSI interconnects. Electron. Lett., 32(11):996–997. [doi:10.1049/el:19960689]

    Article  Google Scholar 

  • Duarte, D.E., Vijaykrishnan, N., Irwin, M.J., 2002. A clock power model to evaluate impact of architectural and technology optimizations. IEEE Trans. VLSI, 10(6):844–855. [doi:10.1109/TVLSI.2002.808433]

    Article  Google Scholar 

  • GGPLAB, 2006. Software for Generalized Geometric Programming. Available from http://www.stanford.edu/~boyd/ggplab/ [Accessed on Dec. 9, 2007].

  • Hajimiri, A., Lee, H., 1998. A general theory of phase noise in electrical oscillators. IEEE J. Sol.-State Circ., 33(2):179–194. [doi:10.1109/4.658619]

    Article  Google Scholar 

  • Hajimiri, A., Limotyrakis, S., Lee, T.H., 1999. Jitter and phase noise in ring oscillators. IEEE J. Sol.-State Circ., 34(6):790–804. [doi:10.1109/4.766813]

    Article  Google Scholar 

  • Hershenson, M.D.M, 2004. CMOS Analog Circuit Design via Geometric Programming. Proc. American Control Conf., p.3266–3271.

  • Hershenson, M.D.M, Hajimiri, A., Mohan, S.S., Boyd, S.P., Lee, T.H., 1999. Design and Optimization of LC Oscillators. IEEE/ACM Int. Conf. on Computer-Aided Design, p.65–69. [doi:10.1109/ICCAD.1999.810623]

  • Hsieh, H.H., Hsu, Y.C., Lu, L.H., 2007. A 15/30-GHz dual-band multiphase voltage-controlled oscillator in 0.18-µm CMOS. IEEE Trans. Microw. Theory Tech., 55(3):474–483. [doi:10.1109/TMTT.2006.890518]

    Article  Google Scholar 

  • Mercey, G., 2003. A 18GHz Rotary Traveling Wave VCO in CMOS with I/Q Outputs. Proc. 29th European Solid-State Circuits Conf., p.489–492. [doi:10.1109/ESSCIRC.2003.1257179]

  • Mercey, G., 2004. 18GHz-36GHz Rotary Traveling Wave Voltage Controlled Oscillator in a CMOS Technology. PhD Thesis, Institute of Electrical Engineering and Information Technology, University of Bundeswehr, Germany.

    Google Scholar 

  • Razavi, B., 2001. Design of Analog CMOS Integrated Circuits. McGraw-Hill Companies, Inc., New York, p.212–216.

    Google Scholar 

  • Restle, P.J., McNamara, T.G., Webber, D.A., Camporese, P.J., Eng, K.F., Jenkins, K.A., Allen, D.H., Rohn, M.J., Quaranta, M.P., Boerstler, D.W., et al., 2001. A clock distribution network for microprocessors. IEEE J. Sol.-State Circ., 36(5):792–799. [doi:10.1109/4.918917]

    Article  Google Scholar 

  • Wood, J., Edwards, T.C., Lipa, S., 2001. Rotary traveling-wave oscillator arrays: a new clock technology. IEEE J. Sol.-State Circ., 36(11):1654–1665. [doi:10.1109/4.962285]

    Article  Google Scholar 

  • Yu, Z.T., Liu, X., 2005. Power Analysis of Rotary Clock. Proc. IEEE Computer Society Annual Symp. on VLSI, p.150–155. [doi:10.1109/ISVLSI.2005.58]

  • Yu, Z.T., Liu, X., 2007. Low-power rotary clock array design. IEEE Trans. VLSI, 15(1):5–12. [doi:10.1109/TVLSI.2006.887804]

    Article  Google Scholar 

  • Zhuo, C., Zhang, H.F., Samanta, R., Hu, J., Chen, K.S., 2007. Modeling, Optimization and Control of Rotary Traveling-wave Oscillator. IEEE/ACM Int. Conf. on Computeraided Design, p.476–480. [doi:10.1109/ICCAD.2007.4397310]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin-fang Zhou.

Additional information

Project (No. 20060335065) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of Ministry of Education, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Lj., Zhang, Hf., Zhou, Jf. et al. Efficient design of rotary traveling wave oscillator array via geometric programming. J. Zhejiang Univ. Sci. A 10, 1815–1823 (2009). https://doi.org/10.1631/jzus.A0820774

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820774

Key words

CLC number

Navigation