Journal of Zhejiang University-SCIENCE A

, Volume 10, Issue 5, pp 677–684 | Cite as

Penetration of disk fragments following impact on thin plate

  • Juan-juan Li
  • Hai-jun Xuan
  • Lian-fang Liao
  • Wei-rong Hong
  • Rong-ren Wu
Article

Abstract

To investigate the ballistic resistance and failure pattern of aeroengine casing following the impact of disk fragments, and to determine the optimum case structure, the phenomena of a 1/3rd disk fragment impact on single and double-layered thin plate targets were simulated using nonlinear dynamical analysis software MSC.Dytran. Strain rate effect was introduced in a Johnson-Cook (JC) material model for the disk fragment and the plate. Impact modeling was based on the Arbitrary Lagrange-Eulerian method, and simulated using explicit finite element method (FEM). Simulation results showed that the major failure pattern of the plate is shearing and tensile fracture with large plastic deformation. It was also concluded that the ballistic limit velocity increases with the standoff distance when it is beyond a certain value, and that greater resistance is obtained when the front plate has either a proportionately low or high thickness. The impact resistance of a double-layered plate may exceed that of a single plate if the thicknesses and standoff distance of the two plates are set appropriately.

Key words

Aeroengine Disk burst failure Case containment capability Ballistic limit velocity 

CLC number

TH/C3778 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Almohandes, A.A., Abdel-Kader, M.S., Eleiche, A.M., 1996. Experimental investigation of the ballistic resistance of steel-fiberglass reinforced polyester laminated plates. Composites Parts B: Engineering, 27(5):447–458. [doi:10.1016/1359-8368(96)00011-X]CrossRefGoogle Scholar
  2. Aviation Safety Network, 2006. Aircraft Accident Boeing 767-223 ER N330AA Los Angeles International Airport [EB/OL]. Available from: http://aviation-safety.net/database/record.php?id=20060602-0 [Accessed 17/02/2008]
  3. Ben-Dor, G., Dubinsky, A., Elperin, T., 1998a. On the ballistic resistance of multi-layered targets with air gaps. International Journal of Solids and Structures, 35(23):3097–3103. [doi:10.1016/S0020-7683(97)00358-2]CrossRefMATHGoogle Scholar
  4. Ben-Dor, G., Dubinsky, A., Elperin, T., 1998b. Effect of air gaps on ballistic resistance of target for conical impactors. Theoretical and Applied Fracture Mechanics, 30(3): 243–249. [doi:10.1016/S0167-8442(98)00059-7]CrossRefMATHGoogle Scholar
  5. Ben-Dor, G., Dubinsky, A., Elperin, T., 1999. Effect of air gap and order of plates on ballistic resistance of two layered armor. Theoretical and Applied Fracture Mechanics, 31(3):233–241. [doi:10.1016/S0167-8442(99)00017-8]CrossRefGoogle Scholar
  6. Børvik, T., Clausen, A.H., Eriksson, M., Berstad, T., Hopperstad, O.S., Langseth, M., 2005. Experimental and numerical study on the perforation of AA6005-T6 panels. International Journal of Impact Engineering, 32(1–4): 35–64. [doi:10.1016/j.ijimpeng.2005.05.001]CrossRefGoogle Scholar
  7. Chen, G., Chen, X., Chen, Z.F., Qu, M., 2007. Simulation of A3 steel blunt projectile impacting 45 steel plates. Explosion and Shock Waves, 27(5):390–397 (in Chinese).MathSciNetGoogle Scholar
  8. Dey, S., Børvik, T., Teng, X., Wierzbicki, T., Hopperstad, O.S., 2007. On the ballistic resistance of double-layered steel plates: An experimental and numerical investigation. International Journal of Solids and Structures, 44(20): 6701–6723. [doi:10.1016/j.ijsolstr.2007.03.005]CrossRefMATHGoogle Scholar
  9. Elek, P., Jaramaz, S., Micković, D., 2005. Modeling of perforation of plates and multi-layered metallic targets. International Journal of Solids and Structures, 42(3–4):1209–1224. [doi:10.1016/j.ijsolstr.2004.06.053]CrossRefGoogle Scholar
  10. Gupta, N.K., Iqbal, M.A., Sekhon, G.S., 2006. Experimental and numerical studies on the behavior of thin aluminum plates subjected to impact by blunt- and hemispherical-nosed projectiles. International Journal of Impact Engineering, 32(12):1921–1944. [doi:10.1016/j.ijimpeng.2005.06.007]CrossRefGoogle Scholar
  11. Gupta, N.K., Iqbal, M.A., Sekhon, G.S., 2008. Effect of projectile nose shape, impact velocity and target thickness on the deformation behaviors of layered plates. International Journal of Impact Engineering, 35(1):37–60. [doi:10.1016/j.ijimpeng.2006.11.004]CrossRefGoogle Scholar
  12. Johnson, G.R., Cook, W.H., 1985. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Engineering Fracture Mechanics, 21(1):31–48. [doi:10.1016/0013-7944(85)90052-9]CrossRefGoogle Scholar
  13. Liang, C.C., Yang, M.F., Wu, P.W., Teng, T.L., 2005. Resistant performance of perforation of multi-layered target using an estimation procedure with marine application. Ocean Engineering, 32(3–4):441–468. [doi:10.1016/j.oceaneng.2004.05.009]CrossRefGoogle Scholar
  14. Woodward, R.L., Cimpoeru, S.J., 1998. A study of the perforation of aluminium laminate targets. International Journal of Impact Engineering, 21(3):117–131. [doi:10.1016/S0734-743X(97)00034-1]CrossRefGoogle Scholar
  15. Zhou, D.W., Strong, W.J., 2008. Ballistic limit for oblique impact of thin sandwich panels and spaced plates. International Journal of Solids and Structures, 35(11): 1339–1354. [doi:10.1016/j.ijimpeng.2007.08.004]Google Scholar
  16. Zukas, J.A., Scheffler, D.R., 2001. Impact effects in multi-layered plates. International Journal of Solids and Structures, 38(19):3321–3328. [doi:10.1016/S0020-7683(00)00260-2]CrossRefMATHGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2009

Authors and Affiliations

  • Juan-juan Li
    • 1
  • Hai-jun Xuan
    • 1
  • Lian-fang Liao
    • 2
  • Wei-rong Hong
    • 1
  • Rong-ren Wu
    • 1
  1. 1.Insititute of Chemical MachineryZhejiang UniversityHangzhouChina
  2. 2.Shenyang Aeroengine Research InstituteShenyangChina

Personalised recommendations