Skip to main content
Log in

Bi-dimension decomposed hidden Markov models for multi-person activity recognition

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We present a novel model for recognizing long-term complex activities involving multiple persons. The proposed model, named ‘decomposed hidden Markov model’ (DHMM), combines spatial decomposition and hierarchical abstraction to capture multi-modal, long-term dependent and multi-scale characteristics of activities. Decomposition in space and time offers conceptual advantages of compaction and clarity, and greatly reduces the size of state space as well as the number of parameters. DHMMs are efficient even when the number of persons is variable. We also introduce an efficient approximation algorithm for inference and parameter estimation. Experiments on multi-person activities and multi-modal individual activities demonstrate that DHMMs are more efficient and reliable than familiar models, such as coupled HMMs, hierarchical HMMs, and multi-observation HMMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brand, M., Oliver, N., Pentland, A., 1997. Coupled Hidden Markov Models for Complex Action Recognition. Proc. CVPR, p.994–999. [doi:10.1109/CVPR.1997.609450]

  • Bui, H.H., Venkatesh, S., West, G., 2002. Policy recognition in the abstract hidden Markov model. J. Artif. Intell. Res., 17:451–499.

    MathSciNet  MATH  Google Scholar 

  • Du, Y., Chen, F., Xu, W., 2007. Human interaction representation and recognition through motion decomposition. IEEE Signal Processing Lett., 14(12):952–955. [doi:10.1109/LSP.2007.908035]

    Article  Google Scholar 

  • Du, Y., Chen, F., Xu, W., Zhang, W., 2008. Activity recognition through multi-scale motion detail analysis. Neurocomputing, 71:3561–3574. [doi:10.1016/j.neucom.2007.09.012]

    Article  Google Scholar 

  • Fine, S., Singer, Y., Tishby, N., 1998. The hierarchical hidden Markov model: analysis and applications. Mach. Learning, 32(1):41–62. [doi:10.1023/A:1007469218079]

    Article  MATH  Google Scholar 

  • Forster, M., 2000. Key concepts in model selection performance and generalizability. J. Math. Psychol., 44:205–231. [doi:10.1006/jmps.1999.1284]

    Article  MATH  Google Scholar 

  • Ghahramani, Z., 2001. An introduction to hidden Markov models and Bayesian networks. Int. J. Pattern Recogn. Artif. Intell., 15(1):9–42. [doi:10.1142/S0218001401000836]

    Article  Google Scholar 

  • Gong, S., Xiang, T., 2003. Recognition of Group Activities Using Dynamic Probabilistic Networks. Proc. ICCV, p.742–749. [doi:10.1109/ICCV.2003.1238423]

  • Intille, S.S., Bobick, A.F., 2001. Recognizing planned, multiperson action. Comput. Vis. Image Underst., 81(3):414–445. [doi:10.1006/cviu.2000.0896]

    Article  MATH  Google Scholar 

  • Liu, X.H., Chua, C.S., 2006. Multi-agent activity recognition using observation decomposed hidden Markov models. Image Vis. Comput., 24:166–175. [doi:10.1016/j.imavis.2005.09.024]

    Article  Google Scholar 

  • Moeslund, T.B., Hilton, A., Krüger, V., 2006. A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst., 104(2–3):90–127. [doi:10.1016/j.cviu.2006.08.002]

    Article  Google Scholar 

  • Murphy, K.P., 2002. Dynamic Bayesian Networks: Representation, Inference and Learning. PhD Thesis, University of California, Berkeley, USA.

    Google Scholar 

  • Murphy, K.P., Paskin, M., 2001. Linear Time Inference in Hierarchical HMMs. Proc. NIPS, p.833–840.

  • Nguyen, N., Phung, D., Venkatesh, S., Bui, H.H., 2005. Learning and Detecting Activities from Movement Trajectories Using the Hierarchical Hidden Markov Model. Proc. CVPR, p.955–960. [doi:10.1109/CVPR.2005.203]

  • Oliver, N., Garg, A., Horvitz, E., 2004. Layered representations for learning and inferring office activity from multiple sensory channels. Comput. Vis. Image Underst., 96(2):163–180. [doi:10.1016/j.cviu.2004.02.004]

    Article  Google Scholar 

  • Schwarz, G., 1978. Estimating the dimension of a model. Ann. Statist., 6(2):461–464. [doi:10.1214/aos/1176344136]

    Article  MathSciNet  MATH  Google Scholar 

  • Wada, T., Matsuyama, T., 2000. Multiobject behavior recognition by event driven selective attention method. IEEE Trans. PAMI, 22(8):873–887. [doi:10.1109/34.868687]

    Article  Google Scholar 

  • Zacks, J.Z., Tversky, B., 2001. Event structure in perception conception. Psychol. Bull., 127(1):3–21. [doi:10.1037/0033-2909.127.1.3]

    Article  Google Scholar 

  • Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I., 2006. Modeling individual and group actions in meetings with layered HMMs. IEEE Trans. Multim., 8(3):509–520. [doi:10.1109/TMM.2006.870735]

    Article  Google Scholar 

  • Zhang, W., Chen, F., Xu, W., Zhang, E., 2006. Real-time Video Intelligent Surveillance System. Proc. ICME, p.1021–1024. [doi:10.1109/ICME.2006.262707]

  • Zhang, W., Chen, F., Xu, W., Cao, Z., 2007. Decomposition in Hidden Markov Models for Activity Recognition. Proc. MCAM, p.232–241. [doi:10.1007/978-3-540-73417-8_30]

  • Zhang, W., Chen, F., Xu, W., Du, Y., 2008. Hierarchical group process representation in multi-agent activity recognition. Signal Processing: Image Commun., 23(10):739–753. [doi:10.1016/j.image.2008.09.001]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-dong Zhang.

Additional information

Project (No. 60772050) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Wd., Chen, F. & Xu, Wl. Bi-dimension decomposed hidden Markov models for multi-person activity recognition. J. Zhejiang Univ. Sci. A 10, 810–819 (2009). https://doi.org/10.1631/jzus.A0820388

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820388

Key words

CLC number

Navigation