Skip to main content
Log in

A model for automatic identification of human pulse signals

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper presents a quantitative method for automatic identification of human pulse signals. The idea is to start with the extraction of characteristic parameters and then to construct the recognition model based on Bayesian networks. To identify depth, frequency and rhythm, several parameters are proposed. To distinguish the strength and shape, which cannot be represented by one or several parameters and are hard to recognize, the main time-domain feature parameters are computed based on the feature points of the pulse signal. Then the extracted parameters are taken as the input and five models for automatic pulse signal identification are constructed based on Bayesian networks. Experimental results demonstrate that the method is feasible and effective in recognizing depth, frequency, rhythm, strength and shape of pulse signals, which can be expected to facilitate the modernization of pulse diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chiu, C.C., Yeh, S.J., Chen, C.H., 2000. Self-organizing arterial pressure pulse classification using neural networks: theoretical considerations and clinical applicability. Comput. Biol. Med., 30(2):71–88. [doi:10.1016/S0010-4825(99)00023-2]

    Article  Google Scholar 

  • Dharmananda, S., 2000. The Significance of Traditional Pulse Diagnosis in the Modern Practice of Chinese Medicine. Institute for Traditional Medicine, Portland, Oregon. Http://www.itmonline.org/arts/pulse.htm

    Google Scholar 

  • Dubois, D., Prade, H., Yager, R.R., 1997. Fuzzy Information Engineering: A Guide Tour of Applications. Wiley, New York, p.149–162.

    Google Scholar 

  • Fei, Z.F., 2003. Contemporary Sphygmology in Traditional Chinese Medicine. People’s Medical Publishing House, Beijing, p.58–73 (in Chinese).

    Google Scholar 

  • Fei, Z.F., Zhang, Z.F., 1995. Imaging and quantificatoin of traditional pulse taking. Chin. J. Nat., 17(5): 269–274 (in Chinese).

    MathSciNet  Google Scholar 

  • Fu, S.E., Lai, S.P., 1989. A System for Pulse Measurement and Analysis of Chinese Medicine. Proc. 11th Annual Int. Conf. on IEEE Engineering in Medicine and Biology Society, p.1695–1696. [doi:10.1109/IEMBS.1989.96411]

  • Heckerman, D., Geiger, D., Chickering, D., 1995. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 20(3):197–243. [doi:10.1007/BF00994016]

    MATH  Google Scholar 

  • Hu, J.N., Yan, S.C., Wang, X.Z., Chu, H., 1997. An intelligent traditional Chinese medicine pulse analysis system model based on artificial neural network. J. China Med. Univ., 26(2):134–137 (in Chinese).

    Google Scholar 

  • Hu, S.Y., Liu, X.H., Chen, P.P., 1998. The parameter analysis of wiry pulse arisen from hepatopathy syndrome in traditional Chinese medicine. J. Hunan Coll. TCM, 18(4):3–5 (in Chinese).

    Google Scholar 

  • Lee, H.L., Suzuki, S., Adachi, Y., Umeno, M., 1993. Fuzzy Theory in Traditional Chinese Pulse Diagnosis. Proc. Int. Joint Conf. on Neural Networks, Nagoya, Japan, 1:774–777. [doi:10.1109/IJCNN.1993.714028]

    Google Scholar 

  • Liu, X.Y., Wang, H.Q., 2005. A discretization algorithm based on a heterogeneity criterion. IEEE Trans. on Knowl. Data Eng., 17(9):1166–1173. [doi:10.1109/TKDE.2005.135]

    Article  Google Scholar 

  • Lu, W.A., Cheng, C.H., Wang, Y.L., Wang, W.K., 1996. Pulse spectrum analysis of hospital patient with possible liver problem. Am. J. Chin. Med., 14(3–4):315–320.

    Article  Google Scholar 

  • Nakayama, Y., Tsumura, K., Yamashita, N., Yoshimaru, K., Hayashi, T., 2000. Pulsatility of ascending aortic pressure waveform is a powerful predictor of restenosis after percutaneous transluminal coronary angioplasty. Circulation, 101(5):470–472.

    Article  Google Scholar 

  • Nicandro, C.R., Hector-Gabriel, A.M., Rocio-Erandi, B.M., Luis-Alonso, N.F., 2006. How good are the Bayesian information criterion and the minimum description length principle for model selection? A Bayesian network analysis. LNCS, 4293:494–504.

    Google Scholar 

  • Nie, C.R., 1984. Interpreting the term “qi” in traditional Chinese medicine and the translation of Chinese medical terms. Zhong Xi Yi Jie He Za Zhi, 4(10):632 (in Chinese).

    Google Scholar 

  • Pearl, J., 1986. Fusion, propagation, and structuring in belief networks. Artif. Intell., 29(3):241–288. [doi:10.1016/0004-3702(86)90072-X]

    Article  MathSciNet  MATH  Google Scholar 

  • Quddus, A., Fahmy, M.M., 1999. An Improved Wavelet-based Corner Detection Technique. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, 6:3213–3216. [doi:10.1109/ICASSP.1999.757525]

    Google Scholar 

  • Shu, J.J., Sun, Y.G., 2007. Developing classification indices for Chinese pulse diagnosis. Compl. Ther. Med., 15(3):190–198. [doi:10.1016/j.ctim.2006.06.004]

    Article  Google Scholar 

  • Spiegelhalter, D.J., 1991. Probabilistic reasoning in expert systems. Am. J. Math. Manag. Sci., 9(3–4):191–210.

    MathSciNet  Google Scholar 

  • Spirtes, P., Meek, C., 1995. Learning Bayesian Networks with Discrete Variables from Data. Proc. 1st Int. Conf. on Knowledge Discovery and Data Mining. AAAI Press, Menlo Park, CA, p.294–299.

    Google Scholar 

  • Spirtes, P., Glymour, C., Scheines, R., 1993. Causation, Prediction and Search (2nd Ed.). The MIT Press, New York.

    Book  MATH  Google Scholar 

  • Sun, L.U., Tang, Y.Y., Xinge, Y., 2004. Corner Detection for Object Recognition by Using Wavelet Transform. Proc. 3rd Int. Conf. on Machine Learning and Cybernetics, Shanghai, p.26–29.

  • Tsui, P.H., Lin, L.Y., Chang, C.C., Hwang, J.J., Lin, J.J., Chu, C.C., Chen, C.N., Chang, K.J., Chang, C.C., 2007. Arterial pulse waveform analysis by the probability distribution of amplitude. Physiol. Meas., 28(8):803–812. [doi:10.1088/0967-3334/28/8/004]

    Article  Google Scholar 

  • Tu, C.L., Hwang, W.L., 2005. Analysis of singularities from modulus maxima of complex wavelets. IEEE Trans. on Inf. Theory, 51(3):1049–1062. [doi:10.1109/TIT.2004.842706]

    Article  MathSciNet  MATH  Google Scholar 

  • Tyan, C.C., Liu, S.H., Chen, J.Y., Liang, W.M., 2008. A novel noninvasive measurement technique for analyzing the pressure pulse waveform of the radial artery. IEEE Trans. on Biomed. Eng., 55(1):288–297. [doi:10.1109/TBME.2007.910681]

    Article  Google Scholar 

  • Wang, H.Y., Cheng, Y.Y., 2005. A Quantitative System for Pulse Diagnosis in Traditional Chinese Medicine. Proc. 27th Annual Int. Conf. on IEEE Engineering in Medicine and Biology Society, Shanghai, China, p.5676–5679. [doi:10.1109/IEMBS.2005.1615774]

  • Wang, H.Y., Zhang, P.Y., 2007. Investigation on the automatic parameters extraction of pulse signals based on wavelet transform. J. Zhejiang Univ. Sci. A, 8(8):1283–1289. [doi:10.1631/jzus.2007.A1283]

    Article  MATH  Google Scholar 

  • Wang, X.W., Qu, H.B., Liu, P., Cheng, Y.Y., 2004. A self-learning expert systems for diagnosis in traditional Chinese medicine. Expert Syst. Appl., 26(4):557–566. [doi:10.1016/j.eswa.2003.10.004]

    Article  Google Scholar 

  • Wu, J.H., Chang, R.S., Jiang, J.A., 2007. A novel pulse measurement system by using laser triangulation and a CMOS image sensor. Sensor, 7:3366–3385.

    Article  Google Scholar 

  • Xie, L., Zhao, Y., 2003. The primary observation of tense pulse parameters. J. Pract. Trad. Chin. Med., 19(2):102 (in Chinese).

    Google Scholar 

  • Xu, L.S., Zhang, D., Wang, K.Q., Wang, L., 2006. Arrhythmic pulses detection using Lempel-Ziv complexity analysis. EURASIP J. Appl. Signal Processing, 2006:1–12. [doi:10.1155/ASP/2006/18268]

    Article  MATH  Google Scholar 

  • Yang, Y., Webb, G.I., 2002. A Comparative Study of Discretization Methods for Naive-Bayes Classifiers. Pacific Rim Knowledge Acquisition Workshop, Tokyo, Japan, p.159–173.

  • Yoon, Y.Z., Lee, M.H., Soh, K.S., 2000. Pulse type classification by varying contact pressure. IEEE Eng. Med. Biol. Mag., 19:106–110. [doi:10.1109/51.887253]

    Google Scholar 

  • Yue, P.P., 2006. The applications of pulse signal and pulse picture in cardiovascular disease diagnosis. J. Tradit. Chin. Med. Liter., 24(1):31–33 (in Chinese).

    Google Scholar 

  • Zhang, P.Y., Wang, H.Y., 2008. A framework for automatic time-domain characteristic parameters extraction of human pulse signals. EURASIP J. Adv. Signal Processing, 2008:468390. [doi:10.1155/2008/468390]

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei-yong Zhang.

Additional information

Project (No. 20070593) supported by the Scientific Research Fund of Zhejiang Provincial Education Department, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Hy., Zhang, Py. A model for automatic identification of human pulse signals. J. Zhejiang Univ. Sci. A 9, 1382–1389 (2008). https://doi.org/10.1631/jzus.A0820332

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820332

Key words

Document code

CLC number

Navigation