Skip to main content
Log in

Optimal constrained multi-degree reduction of Bézier curves with explicit expressions based on divide and conquer

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

We decompose the problem of the optimal multi-degree reduction of Bézier curves with corners constraint into two simpler subproblems, namely making high order interpolations at the two endpoints without degree reduction, and doing optimal degree reduction without making high order interpolations at the two endpoints. Further, we convert the second subproblem into multi-degree reduction of Jacobi polynomials. Then, we can easily derive the optimal solution using orthonormality of Jacobi polynomials and the least square method of unequally accurate measurement. This method of ‘divide and conquer’ has several advantages including maintaining high continuity at the two endpoints of the curve, doing multi-degree reduction only once, using explicit approximation expressions, estimating error in advance, low time cost, and high precision. More importantly, it is not only deduced simply and directly, but also can be easily extended to the degree reduction of surfaces. Finally, we present two examples to demonstrate the effectiveness of our algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, Y.J., Lee, B.G., Park, Y., Yoo, J., 2004. Constrained polynomial degree reduction in the L 2-norm equals best weighted Euclidean approximation of Bézier coefficients. Computer Aided Geometric Design, 21(2):181–191. [doi:10.1016/j.cagd.2003.10.001]

    Article  MathSciNet  MATH  Google Scholar 

  • Borwein, P., Erdelyi, T., 1995. Polynomial and Polynomial Inequalities (1st Ed.). Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Chen, G.D., Wang, G.J., 2002. Optimal multi-degree reduction of Bézier curves with constraints of endpoints continuity. Computer Aided Geometric Design, 19(6):365–377. [doi:10.1016/S0167-8396(02)00093-6]

    Article  MathSciNet  Google Scholar 

  • Dannenberg, L., Nowacki, H., 1985. Approximate conversion of surface representations with polynomial bases. Computer Aided Geometric Design, 2(1–3):123–132. [doi:10.1016/0167-8396(85)90015-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Eck, M., 1993. Degree reduction of Bézier curves. Computer Aided Geometric Design, 10(3–4):237–257. [doi:10.1016/0167-8396(93)90039-6]

    Article  MathSciNet  MATH  Google Scholar 

  • Eck, M., 1995. Least squares degree reduction of Bézier curves. Computer-Aided Design, 27(11):845–851. [doi:10.1016/0010-4485(95)00008-9]

    Article  Google Scholar 

  • Farin, G., 1983. Algorithms for rational Bézier curves. Computer-Aided Design, 15(2):73–77. [doi:10.1016/0010-4485(83)90171-9]

    Article  Google Scholar 

  • Forrest, A.R., 1972. Interactive interpolation and approximation by Bézier polynomials. The Computer Journal, 15(1):71–79.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoschek, J., 1987. Approximation of spline curves. Computer Aided Geometric Design, 4(1–2):59–66. [doi:10.1016/0167-8396(87)90024-0]

    Article  MathSciNet  MATH  Google Scholar 

  • Lachance, M.A., 1988. Chebyshev economization for parametric surfaces. Computer Aided Geometric Design, 5(3):195–208. [doi:10.1016/0167-8396(88)90003-9]

    Article  MathSciNet  MATH  Google Scholar 

  • Lodha, S., Warren, J., 1994. Degree reduction of Bézier simplexes. Computer-Aided Design, 26(10):735–746. [doi:10.1016/0010-4485(94)90012-4]

    Article  MATH  Google Scholar 

  • Moore, D., Warren, J., 1991. Least-squares Approximations to Bézier Curves and Surfaces. In: Arvo, J. (Ed.), Graphics Gems II. Academic Press, New York, p.406–411.

    Chapter  Google Scholar 

  • Rababah, A., Lee, B.G., Yoo, J., 2006. A simple matrix form for degree reduction of Bézier curves using Chebyshev-Bernstein basis transformations. Appl. Math. Comput., 181(1):310–318. [doi:10.1016/j.amc.2006.01.034]

    MathSciNet  MATH  Google Scholar 

  • Rababah, A., Lee, B.G., Yoo, J., 2007. Multiple degree reduction and elevation of Bézier curves using Jacobi-Bernstein basis transformations. Numer. Funct. Anal. Optim., 28(9–10):1179–1196.

    Article  MathSciNet  MATH  Google Scholar 

  • Sunwoo, H., 2005. Matrix representation for multi-degree reduction of Bézier curves. Computer Aided Geometric Design, 22(3):261–273. [doi:10.1016/j.cagd.2004.12.002]

    Article  MathSciNet  MATH  Google Scholar 

  • Watson, G.A., 1980. Approximation Theory and Numerical Methods. John Wiley & Sons, Chichester.

    MATH  Google Scholar 

  • Zhang, R.J., Wang, G.J., 2005. Constrained Bézier curves’ best multi-degree reduction in the L 2-norm. Progr. Nat. Sci., 15(9):843–850. [doi:10.1080/10020070512331343010]

    Article  MATH  Google Scholar 

  • Zheng, J.M., Wang, G.Z., 2003. Perturbing Bézier coefficients for best constrained degree reduction in the L 2 norm. Graphical Models, 65(6):351–368. [doi:10.1016/j.gmod.2003.07.001]

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-jin Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 60873111) and the National Basic Research Program (973) of China (No. 2004CB719400)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, L., Wang, Gj. Optimal constrained multi-degree reduction of Bézier curves with explicit expressions based on divide and conquer. J. Zhejiang Univ. Sci. A 10, 577–582 (2009). https://doi.org/10.1631/jzus.A0820290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0820290

Key words

CLC number

Navigation