Skip to main content
Log in

Fibrous TiO2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption, hydrolysis and calcinations

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

TiO2 fibers were prepared via alternatively introducing water vapor and Ti precursor carried by N2 to an APCVD (chemical vapor deposition under atmospheric pressure) reactor at ≤200 °C. Activated carbon fibers (ACFs) were used as templates for deposition and later removed by calcinations. The obtained catalysts were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer, Emmett and Teller (BET) and X-ray diffraction (XRD) analysis. The pores within TiO2 fibers included micro-range and meso-range, e.g., 7 nm, and the specific surface areas for TiO2 fibers were 141 m2/g and 148 m2/g for samples deposited at 100 °C and 200 °C (using ACF1700 as template), respectively. The deposition temperature significantly influenced TiO2 morphology. The special advantages of this technique for preparing porous nano-material include no consumption of organic solvent in the process and easy control of deposition conditions and speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anandan, S., Vinub, A., Venkatachalam, N., Arabindoo, B., Murugesan, V., 2006. Photocatalytic activity of ZnO impregnated Hβ and mechanical mix of ZnO/Hβ in the degradation of monocrotophos in aqueous solution. Journal of Molecular Catalysis A Chemical, 256(1–2): 312–320. [doi:10.1016/j.molcata.2006.05.012]

    Article  Google Scholar 

  • Caricato, A.P., Capone, S., Ciccarella, G., Martino, M., Rella, R., Romano, F., Spadavecchia, J., Taurino, A., Tunno, T., Valerini, D., 2007. TiO2 nanoparticle thin film deposition by matrix assisted pulsed laser evaporation for sensing applications. Applied Surface Science, 253(19):7937–7944. [doi:10.1016/j.apsusc.2007.02.066]

    Article  Google Scholar 

  • Huang, Z., Kang, F., Huang, W., Yang, J., Liang, K., Cui, M., Cheng, Z., 2002. Pore structure and fractal characteristics of activated carbon fibers characterized by using HRTEM. Journal of Colloid and Interface Science, 249(2):453–457. [doi:10.1006/jcis.2002.8274]

    Article  Google Scholar 

  • Imai, H., Matsuta, M., Shimizu, K., Hirashima, H., Negishi, N., 2002. Morphology transcription with TiO2 using chemical solution growth and its application for photocatalysts. Solid State Ionics, 151(1–4):183–187. [doi:10.1016/S0167-2738(02)00708-7]

    Article  Google Scholar 

  • Kondo, Y., Yoshikawa, H., Awaga, K., Murayama, M., Mori, T., Sunada, K., Bandow, S., Iijima, S., 2008. Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir, 24(2):547–550. [doi:10.1021/la702157r]

    Article  Google Scholar 

  • Liu, Y., Qi, T., Zhang, Y., 2007. Synthesis of hexatitanate and titanium dioxide fibers by ion-exchange approach. Materials Research Bulletin, 42(1):40–45. [doi:10.1016/j.materresbull. 2006.05.013]

    Article  Google Scholar 

  • Lu, H., Zhang, L., Xing, W., Wang, H., Xu, N., 2005. Preparation of TiO2 hollow fibers using poly (vinylidene fluoride) hollow fiber microfiltration membrane as a template. Materials Chemistry and Physics, 94(2-3):322–327. [doi:10.1016/j.matchemphys.2005.05.008]

    Article  Google Scholar 

  • Macak, J.M., Schmidt-Stein, F., Schmuki, P., 2007. Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochemistry Communications, 9(7):1783–1787. [doi:10.1016/j.elecom.2007.04.002]

    Article  Google Scholar 

  • Madhugiri, S., Sun, B., Smirniotis, P.G., Ferraris, J.P., Balkus, K.J., 2004. Electrospun mesoporous titanium dioxide fibers. Microporous and Mesoporous Materials, 69(1-2):77–83. [doi:10.1016/j.micromeso.2003.12.023]

    Article  Google Scholar 

  • Matsumoto, A., Tsutsumi, K., Kaneko, K., 1992. Titania coating of a microporous carbon surface by molecular adsorption-deposition. Langmuir, 8(10):2515–2520. [doi:10.1021/la00046a027]

    Article  Google Scholar 

  • Savage, P.E., 2000. Heterogeneous catalysis in supercritical water. Catalysis Today, 62(2-3):167–173. [doi:10.1016/S0920-5861(00)00418-1]

    Article  Google Scholar 

  • Viswanathamurthi, P., Bhattarai, N., Kim, C.K., Kim, H.Y., Lee, D.R., 2004. Ruthenium doped TiO2 fibers by electrospinning. Inorganic Chemistry Communications, 7(5):679–682. [doi:10.1016/j.inoche.2004.03.013]

    Article  Google Scholar 

  • Yuan, R., Fu, X., Wang, X., Liu, P., Wu, L., Xu, Y., Wang, X., Wang, Z., 2006a. Template synthesis of hollow metal oxide fibers with hierarchical architecture. Chemistry of Materials, 18(19):4700–4705. [doi:10.1021/cm0609911]

    Article  Google Scholar 

  • Yuan, R., Fu, X., Liu, P., Wang, X., 2006b. Influence of solvents on morphology of TiO2 fibers prepared by template synthesis. Scripta Materialia, 55(11):1003–1006. [doi:10.1016/j.scriptamat.2006.08.015]

    Article  Google Scholar 

  • Zeng, H., 2005. Gong Neng Xian Wei (Functional Fibers). Chemical Industry Press, Beijing, p.111.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-fen Liu.

Additional information

Project (No. 20477006) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Hn., Liu, Lf., Yang, Fl. et al. Fibrous TiO2 prepared by chemical vapor deposition using activated carbon fibers as template via adsorption, hydrolysis and calcinations. J. Zhejiang Univ. Sci. A 9, 981–987 (2008). https://doi.org/10.1631/jzus.A0720089

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0720089

Key words

CLC number

Navigation