Skip to main content
Log in

Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

A detailed mathematical model of a direct internal reforming solid oxide fuel cell (DIR-SOFC) incorporating with simulation of chemical and physical processes in the fuel cell is presented. The model is developed based on the reforming and electrochemical reaction mechanisms, mass and energy conservation, and heat transfer. A computational fluid dynamics (CFD) method is used for solving the complicated multiple partial differential equations (PDEs) to obtain the numerical approximations. The resulting distributions of chemical species concentrations, temperature and current density in a cross-flow DIR-SOFC are given and analyzed in detail. Further, the influence between distributions of chemical species concentrations, temperature and current density during the simulation is illustrated and discussed. The heat and mass transfer, and the kinetics of reforming and electrochemical reactions have significant effects on the parameter distributions within the cell. The results show the particular characteristics of the DIR-SOFC among fuel cells, and can aid in stack design and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achenbach, E., 1994. 3D and time-dependent simulation of a planar solid oxide fuel cell stack. Journal of Power Sources, 49(1-3):333–348. [doi:10.1016/0378-7753(93)01833-4]

    Article  Google Scholar 

  • Aguiar, P., Chadwick, D., Kershenbaum, L., 2002. Modelling of an indirect internal reforming solid oxide fuel cell. Chemical Engineering Science, 57(10):1665–1677. [doi:10.1016/S0009-2509(02)00058-1]

    Article  Google Scholar 

  • Aguiar, P., Adjiman, C.S., Brandon, N.P., 2004. Anode-supported intermediate-temperature direct internal reforming solid oxide fuel cell. I: model-based steady-state performance. Journal of Power Sources, 138(1-2):120–136. [doi:10.1016/j.jpowsour.2004.06.040]

    Article  Google Scholar 

  • Al-Baghdadi, M.A.R.S., Al-Janabi, H.A.K.S., 2007. Optimization study of a PEM fuel cell performance using 3D multi-phase computational fluid dynamics model. Journal of Zhejiang University SCIENCE A, 8(2):285–300. [doi:10.1631/jzus.2007.A0285]

    Article  MATH  Google Scholar 

  • Bose, T.K., 1988. Computational Fluid Dynamics. Wiley Eastern Limited, New Delhi, p.6.

    Google Scholar 

  • Chan, S.H., Low, C.F., Ding, O.L., 2002. Energy and exergy analysis of a simple solid-oxide fuel cell power system. Journal of Power Sources, 103(2):188–200. [doi:10.1016/S0378-7753(01)00842-4]

    Article  Google Scholar 

  • Chan, S.H., Ho, H.K., Tian, Y., 2003. Multi-level modeling of SOFC-gas turbine hybrid system. International Journal Hydrogen Energy, 28(8):889–900. [doi:10.1016/S0360-3199(02)00160-X]

    Article  Google Scholar 

  • Chen, X.J., Liu, Q.L., Chan, S.H., Brandon, N.P., Khor, K.A., 2007a. High performance cathode-supported SOFC with perovskite anode operating in weakly humidified hydrogen and methane. Electrochemistry Communications, 9(4):767–772. [doi:10.1016/j.elecom.2006.11.012]

    Article  Google Scholar 

  • Chen, X.J., Liu, Q.L., Chan, S.H., Brandon, N.P., Khor, K.A., 2007b. Sulfur tolerance and hydrocarbon stability of La0.75Sr0.25Cr0.5Mn0.5O3/Gd0.2Ce0.8O1.9 composite anode under anodic polarization. Journal of the Electrochemical Society, 154(11):B1206–B1210. [doi:10.1149/1.2780866]

    Article  Google Scholar 

  • Ferziger, J.H., Peric, M., 1996. Computational Methods for Fluid Dynamics. Springer-Verlag, New York, p.10.

    Book  MATH  Google Scholar 

  • Georges, S., Parrour, G., Henault, M., Fouletier, J., 2006. Gradual internal reforming of methane: a demonstration. Solid State Ionics, 177(19–25):2109–2112. [doi:10.1016/j.ssi.2006.01.033]

    Article  Google Scholar 

  • He, W., Chen, Q., 1998. 3D simulation of a molten carbonate fuel cell stack under transient conditions. Journal of Power Sources, 73(2):182–192. [doi:10.1016/S0378-7753(97)02800-0]

    Article  Google Scholar 

  • Hu, G.L., Fan, J.R., Chen, S., Liu, Y.J., Cen, K.F., 2004. 3D numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields. Journal of Power Sources, 136(1):1–9. [doi:10.1016/j.jpowsour.2004.05.010]

    Article  Google Scholar 

  • Jiang, W., Fang, R.X., Khan, J.A., Dougal, R.A., 2006. Parameter setting and analysis of a dynamic tubular SOFC model. Journal of Power Sources, 162(1):316–326. [doi:10.1016/j.jpowsour.2006.06.086]

    Article  Google Scholar 

  • Larminie, J., Dicks, A., 2000. Fuel Cell Systems Explained. Wiley, New York, p.164.

    Google Scholar 

  • Vernoux, P., Guindet, J., Kleitz, M., 1998. Gradual internal methane reforming in intermediate-temperature solid-oxide fuel cells. Journal of the Electrochemical Society, 145(10):3487–3492. [doi:10.1149/1.1838832]

    Article  Google Scholar 

  • Xu, J.G., Froment, G.F., 1989. Methane steam reforming, methanation and water-gas shift: I. intrinsic kinetics. AIChE Journal, 35(1):88–96. [doi:10.1002/aic.690350109]

    Article  Google Scholar 

  • Zitouni, B., Ben, Moussa, H., Oulmi, K., 2007. Studying on the increasing temperature in IT-SOFC: Effect of heat sources. Journal of Zhejiang University SCIENCE A, 8(9):1500–1504. [doi:10.1631/jzus.2007.A1500]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Additional information

Project (No. 2006AA05Z148) supported by the Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, J., Kang, Yw., Cao, Gy. et al. Numerical simulation of a direct internal reforming solid oxide fuel cell using computational fluid dynamics method. J. Zhejiang Univ. Sci. A 9, 961–969 (2008). https://doi.org/10.1631/jzus.A0720054

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A0720054

Key words

CLC number

Navigation