Journal of Zhejiang University-SCIENCE A

, Volume 9, Issue 5, pp 648–653 | Cite as

A numerical analysis to the non-linear fin problem

Article

Abstract

In this paper a numerical analysis is carried out to obtain the temperature distribution within a single fin. It is assumed that the heat transfer coefficient depends on the temperature. The complete highly non-linear problem is solved numerically and the variations of both, dimensionless surface temperature and dimensionless surface temperature gradient as well as heat transfer characteristics with the governing non-dimensional parameters of the problem are graphed and tabulated.

Key words

Fins Ordinary differential equations (ODEs) Numerical solution Heat transfer 

CLC number

O59 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aziz, A., 1977. Perturbation solution for convective fin with internal heat generation and temperature-dependent thermal conductivity. Int. J. Heat Mass Transfer, 20(11):1253–1255. [doi:10.1016/0017-9310(77)90135-1]CrossRefGoogle Scholar
  2. Chang, C.W., Chang, J.R., Liu, C.S., 2006. The Lie-group shooting method for boundary layer equations in fluid mechanics. J. Hydrodynamics Ser. B, 18(3):103–108. [doi:10.1016/S1001-6058(06)60038-3]CrossRefGoogle Scholar
  3. Chang, M.H., 2005. A decomposition solution for fins with temperature dependent surface heat flux. Int. J. Heat Mass Transfer, 48(9):1819–1824. [doi:10.1016/j.ijheatmasstransfer.2004.07.049]CrossRefMATHGoogle Scholar
  4. Chiu, C.H., Chen, C.K., 1977. A decomposition method for solving the convective longitudinal fins with variable thermal conductivity. Int. J. Heat Mass Transfer, 45(10):2067–2075. [doi:10.1016/S0017-9310(01)00286-1]CrossRefMATHGoogle Scholar
  5. Chowdhury, M.S.H., Hashim, I., 2007. Analytical solutions to heat transfer equations by homotopy-perturbation method revisited. Phys. Lett. A, in press. [doi:10.1016/j.physleta.2007.09.015]Google Scholar
  6. Chowdhury, M.S.H., Hashim, I., Abdulaziz, O., 2007. Comparison of homotopy-analysis method and homotopy-perturbation method for purely nonlinear fin-type problems. Communications in Nonlinear Science & Numerical Simulation, in press. [doi:10.1016/j.cnsns.2007.09.005]Google Scholar
  7. Cortell, R., 1993. Application of the fourth-order Runge-Kutta method for the solution of high-order general initial value problems. Comput. & Struct., 49(5):897–900. [doi:10.1016/0045-7949(93)90036-D]MathSciNetCrossRefMATHGoogle Scholar
  8. Cortell, R., 1994. Similarity solutions for flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. Non-Linear Mech., 29(2):155–161. [doi:10.1016/0020-7462(94)90034-5]CrossRefMATHGoogle Scholar
  9. Cortell, R., 1995. Fourth Order Runge-Kutta Method in 1D for High Gradient Problems. In: Topping, B.H.V. (Ed.), Developments in Computational Engineering Mechanics. Civil-Comp. Press, New York, p.121–124.Google Scholar
  10. Cortell, R., 2005a. Flow and heat transfer of a fluid through a porous medium over a stretching surface with internal heat generation/absorption and suction/blowing. Fluid Dyn. Research, 37(4):231–245. [doi:10.1016/j.fluiddyn.2005.05.001]CrossRefMATHGoogle Scholar
  11. Cortell, R., 2005b. Numerical solutions of the classical Blasius flat-plate problem. Appl. Math. Comp., 170(1):706–710. [doi:10.1016/j.amc.2004.12.037]MathSciNetCrossRefMATHGoogle Scholar
  12. Cortell, R., 2006a. A note on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Int. J. Non-Linear Mech., 41(1):78–85. [doi:10.1016/j.ijnonlinmec.2005.04.008]CrossRefMATHGoogle Scholar
  13. Cortell, R., 2006b. MHD boundary-layer flow and heat transfer of a non-Newtonian power-law fluid past a moving plate with thermal radiation. Nuovo Cimento-B 121(9):951–964.Google Scholar
  14. Cortell, R., 2007a. Viscoelastic fluid flow and heat transfer over a stretching sheet under the effects of a non-uniform heat source, viscous dissipation and thermal radiation. Int. J. Heat Mass Transfer, 50(15–16):3152–3162. [doi:10.1016/j.ijheatmasstransfer.2007.01.003]MATHGoogle Scholar
  15. Cortell, R., 2007b. Effects of heat source/sink, radiation and work done by deformation on flow and heat transfer of a viscoelastic fluid over a stretching sheet. Comput. Math. Appl., 53(2):305–316. [doi:10.1016/j.camwa.2006.02.041]MathSciNetCrossRefMATHGoogle Scholar
  16. Domairry, G., Fazeli, M., 2007. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature dependent thermal conductivity. Communications in Nonlinear Science & Numerical Simulation, in press. [doi:10.1016/j.cnsns.2007.09.007]Google Scholar
  17. Fang, T., Guo, F., Lee, C.F., 2006. A note on the extended Blasius equation. Appl. Math. Lett., 19(7):613–617. [doi:10.1016/j.aml.2005.08.010]MathSciNetCrossRefMATHGoogle Scholar
  18. Ganji, D.D., 2006. The application of He’s homotopy perturbationmethod to nonlinear equations arising in heat transfer. Phys. Lett. A, 355(4–5):337–341. [doi:10.1016/j.physleta.2006.02.056]MathSciNetCrossRefMATHGoogle Scholar
  19. Ganji, D.D., Hosseini, M.J., Shayegh, J., 2007. Some nonlinear heat transfer equations solved by three approximate methods. Int. Comm. Heat Mass Transfer, 34(8):1003–1016. [doi:10.1016/j.icheatmasstransfer.2007. 05.010]CrossRefGoogle Scholar
  20. Hutcheon, I.C., Spalding, D.B., 1958. Prismatic fin non-linear heat loss analysed by resistance network and iterative analogue computer. British Journal of Applied Physics, 9(5):185–190. [doi:10.1088/0508-3443/9/5/304]CrossRefGoogle Scholar
  21. Ishak, A., Nazar, R., Pop, I., 2007a. Boundary-layer flow of a micropolar fluid on a continuously moving or fixed permeable surface. Int. J. Heat Mass Transfer, 50(23–24):4743–4748. [doi:10.1016/j.ijheatmasstransfer.2007.03.034]CrossRefMATHGoogle Scholar
  22. Ishak, A., Nazar, R., Pop, I., 2007b. Boundary layer on a moving wall with suction and injection. Chin. Phys. Lett., 24(8):2274–2276. [doi:10.1088/0256-307X/24/8/033]CrossRefGoogle Scholar
  23. Kim, S., Huang, C.H., 2006. A series solution of the fin problem with temperature-dependent thermal conductivity. J. Phys. D: Appl. Phys., 39(22):4894–4901. [doi:10.1088/0022-3727/39/22/023]CrossRefGoogle Scholar
  24. Kim, S., Huang, C.H., 2007. A series solution of the non-linear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. J. Phys. D: Appl. Phys., 40(9):2979–2987. [doi:10.1088/0022-3727/40/9/046]CrossRefGoogle Scholar
  25. Kim, S., Moon, J.H., Huang, C.H., 2007. An approximate solution of the nonlinear fin problem with temperature-dependent thermal conductivity and heat transfer coefficient. J. Phys. D: Appl. Phys., 40(14):4382–4389. [doi:10.1088/0022-3727/40/14/038]CrossRefGoogle Scholar
  26. Kiwan, S., 2007. Effect of radiative losses on the heat transfer from porous fins. Int. J. Thermal Sci., 46(10):1046–1055. [doi:10.1016/j.ijthermalsci.2006.11.013]CrossRefGoogle Scholar
  27. Lesnic, D., Hegs, P.J., 2004. A decomposition method for power-law fin-type problems. Int. Comm. Heat Mass Transfer, 31(5):673–682. [doi:10.1016/S0735-1933(04)00054-5]CrossRefGoogle Scholar
  28. Liaw, S.P., Yeh, R.H. 1994. Fins with temperature dependent surface heat flux. I. Single heat transfer mode. Int. J. Heat Mass Transfer, 37(10):1509–1515. [doi:10.1016/0017-9310(94)90152-X]CrossRefGoogle Scholar
  29. Miansari, Mo., Ganji, D.D., Miansari, Me, 2008. Application of He’s variational iteration method to nonlinear heat transfer equations. Phys. Lett. A, 372(6):779–785. [doi:10.1016/j.physleta.2007.08.065]MathSciNetCrossRefMATHGoogle Scholar
  30. Taigbenu, A.E., Onyejekwe, O.O., 1999. Green’s function-based integral approaches to nonlinear transient boundary value problems (II). Appl. Math. Modelling, 23(3):241–253. [doi:10.1016/S0307-904X(98)10048-3]CrossRefMATHGoogle Scholar
  31. Tari, H, Ganji, D.D., Babazadeh H., 2007. The application of He’s variational iteration method to nonlinear equations arising in heat transfer. Phys. Lett. A, 363(3):213–217. [doi:10.1016/j.physleta.2006.11.005]CrossRefMATHGoogle Scholar
  32. Yang, I.C., Lee, H.L., Wei, E.J., Lee, J.F., Wu, T.S., 2005. Numerical analysis of two dimensional pin fins with non-constant base heat flux. Energy Conv. Management, 46(6):881–892. [doi:10.1016/j.enconman.2004.06.009]CrossRefGoogle Scholar

Copyright information

© Zhejiang University and Springer-Verlag GmbH 2008

Authors and Affiliations

  1. 1.Department of Applied PhysicsPolytechnic University of ValenciaValenciaSpain

Personalised recommendations