Skip to main content
Log in

Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper focused on the removal and transformation of the dissolved organic matter (DOM) in secondary effluent during the granular activated carbon (GAC) treatment. Using XAD-8/XAD-4 resins, DOM was fractionated into five classes: hydrophobic acid (HPO-A), hydrophobic neutral (HPO-N), transphilic acid (TPI-A), transphilic neutral (TPI-N) and hydrophilic fraction (HPI). Subsequently, the water quality parameters of dissolved organic carbon (DOC), absorbance of ultraviolet light at 254 nm (UV-254), specific ultraviolet light absorbance (SUVA) and trihalomethane formation potential (THMFP) were analyzed for the unfractionated and fractionated water samples. The results showed that the order of the DOC removal with respect to DOM fractions was observed to be HPI>HPO-A>HPO-N>TPI-A>TPI-N. During the GAC treatment, the THMFP of the unfractionated water samples decreased from 397.4 μg/L to 176.5 μg/L, resulting in a removal efficiency of 55.6%. The removal order of the trihalomethanes (THMs) precursor was as follows: HPO-A>TPI-A>TPI-N>HPO-N>HPI. By the GAC treatment, the specific THMFP of HPO-A, TPI-A, TPI-N and the original unfractionated water samples had a noticeable decrease, while that of HPO-N and HPI showed a converse trend. The Fourier transform infrared (FTIR) results showed that the hydroxide groups, carboxylic acids, aliphatic C—H were significantly reduced by GAC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aiken, G.R., McKnight, D.M., Thorn, K.A., Thurman, E.M., 1992. Isolation of hydrophilic organic acids from water using nonionic macroporous resins. Organic Geochemistry, 18(4):567–573. [doi:10.1016/0146-6380(92)90119-I]

    Article  Google Scholar 

  • Amy, G., Cho, J., 1999. Interactions between natural organic matter (NOM) and membranes: rejection and fouling. Water Science and Technology, 40(9):131–139. [doi:10.1016/S0273-1223(99)00649-6]

    Article  Google Scholar 

  • APHA (American Public Health Association), 1987. Standard Methods for the Examination of Water and Wastewater. Washington, DC.

  • Chen, H.H., Yeh, H.H., Shiau, S., 2005. The membrane application on the wastewater reclamation and reuse from the effluent of industrial WWTP in northern Taiwan. Desalination, 185(1–3):227–239. [doi:10.1016/j.desal.2005.03.079]

    Article  Google Scholar 

  • Cheng, W., Dastgheib, S.A., Karanfil, T., 2005. Adsorption of dissolved natural organic matter by modified activated carbons. Water Research, 39(11):2281–2290. [doi:10.1016/j.watres.2005.01.031]

    Article  Google Scholar 

  • Chow, A.T., Tanji, K.K., Gao, S.D., 2003. Production of dissolved organic carbon (DOC) and trihalomethane (THM) precursor from peat soils. Water Research, 37(18):4475–4485. [doi:10.1016/S0043-1354(03)00437-8]

    Article  Google Scholar 

  • Chow, A.T., Guo, F.M., Gao, S.D., Breuer, R., Dahlgren, R.A., 2005. Filter pore size selection for characterizing dissolved organic carbon and trihalomethane precursors from soils. Water Research, 39(7):1255–1264. [doi:10.1016/j.watres.2005.01.004]

    Article  Google Scholar 

  • Cloirec, P.L., Brasquet, C., Subrenat, E., 1997. Adsorption onto fibrous activated carbon: applications to water treatment. Energy Fuels, 11(2):331–336. [doi:10.1021/ef9601430]

    Article  Google Scholar 

  • Croue, J.P., Violleau, D., Labouyrie, L., 2000. Disinfection Byproduct Formation Potentials of Hydrophobic and Hydrophilic Natural Organic Matter Fractions: a Comparison Between a Low-and a High-humic Water. In: Barrett, S.E., Krasner, S.W., Amy, G.L. (Eds.), Natural Organic Matter and Disinfection By-Products—Characterization and Control in Drinking Water. ACS Symposium Series 761, American Chemical Society, Washington, DC.

    Google Scholar 

  • Galapate, R.P., Baes, A.U., Okada, M., 2001. Transformation of dissolved organic matter during ozonation effects on trihalomethane formation potential. Water Research, 35(9):2201–2206. [doi:10.1016/S0043-1354(00)00489-9]

    Article  Google Scholar 

  • Goi, D., Tubaro, F., Barbone, F., Dolcetti, G., Bontempelli, G., 2005. Evaluation of chlorinated by-products in drinking waters of central Friuli (Italy). Annali di Chimica, 95(9-10):617–627. [doi:10.1002/adic.200590073]

    Article  Google Scholar 

  • Her, N., Amy, G., McKnight, D., Sohn, J.S., Yoon, Y.M., 2003. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection. Water Research, 37(17):4295–4303. [doi:10.1016/S0043-1354(03)00317-8]

    Article  Google Scholar 

  • Imai, A., Takehiko, F., Kazuo, M., Kim, Y.H., 2001. Fractionation and characterization of dissolved organic matter in a shallow eutrophic lake, its inflowing rivers, and other organic matter sources. Water Research, 35(17):4019–4028. [doi:10.1016/S0043-1354(01)00139-7]

    Article  Google Scholar 

  • Imai, A., Kazuo, M., Takashi, N., 2003. Trihalomethane formation potential of dissolved organic matter in a shallow eutrophic lake. Water Research, 37(17):4284–4294. [doi:10.1016/S0043-1354(03)00310-5]

    Article  Google Scholar 

  • Karanfil, T., Kitis, M., Kilduff, J.E., Wigton, A., 1999. Role of granular activated carbon surface chemistry on the adsorption of organic compounds. 2. Natural organic matter. Environmental Science and Technology, 33(18):3225–3233. [doi:10.1021/es9810179]

    Article  Google Scholar 

  • Karanfil, T., Erdogan, I., Schlautman, M.A., 2003. Selecting filter membranes for measuring DOC and UV 254. American Water Works Association, 95(3):86–100.

    Google Scholar 

  • Kim, H.C., Yu, M.J., 2005a. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control. Water Research, 39(19):4779–4789. [doi:10.1016/j.watres. 2005.09.021]

    Article  Google Scholar 

  • Kim, M.H., Yu, M.J., 2005b. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane. Environmental Research, 97(1):116–123. [doi:10.1016/j.envres.2004.07.012]

    Article  Google Scholar 

  • Kim, Y.J., Osako, M., 2004. Investigation on the humification of municipal solid waste incineration residue and its effect on the leaching behavior of dioxins. Waste Management, 24(8):815–823. [doi:10.1016/j.wasman.2004.04.004]

    Article  Google Scholar 

  • Leenheer, J.A., 1981. Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science and Technology, 15(5):578–587. [doi:10.1021/es00087a010]

    Article  Google Scholar 

  • Leenheer, J.A., Croué, J.P., 2003. Characterizing dissolved aquatic organic matter. Environmental Science and Technology, 37(1):18A–26A.

    Article  Google Scholar 

  • Lin, C.F., Liu, S.H., Hao, O.J., 2001. Effect of functional groups of humic substances on UF performance. Water Research, 35(10):2395–2402. [doi:10.1016/S0043-1354(00)00525-X]

    Article  Google Scholar 

  • Ma, H.Z., Herbert, E.A, Yin, Y.J., 2001. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Research, 35(4):985–996. [doi:10.1016/S0043-1354(00)00350-X]

    Article  Google Scholar 

  • Maurice, P.A., Pullin, M.J., Cabaniss, S.E., 2002. A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates. Water Research, 36(9):2357–2371. [doi:10.1016/S0043-1354(01)00442-0]

    Article  Google Scholar 

  • McGeehin, M.A., Reif, J.S., Becher, J.C., Mangione, E.J., 1993. Case-control study of bladder cancer and water disinfection methods in Colorado. Epidemiology, 138(7): 492–501.

    Google Scholar 

  • Newcombe, G., Drikas, M., Hayes, R., 1997. Influence of characterized natural organic material on activated carbon adsorption: II effect on pore volume distribution and adsorption of 2-methylisoborneol. Water Research, 31(5): 1065–1073. [doi:10.1016/S0043-1354(96)00325-9]

    Article  Google Scholar 

  • Quanrud, D.M., Arnold, R.G., Wilson, L.G., Martha, H.C., Conklin, M.H., 1996. Effect of soil type on water quality improvement during soil aquifer treatment. Water Science and Technology, 33(10–11):419–431. [doi:10.1016/0273-1223(96)00445-3]

    Article  Google Scholar 

  • Rebhun, M., Goodman, N.L., Barker, F.B., 1987. Monitoring and study program of an interregional wastewater reclamation system for agriculture. Journal Water Pollution Control Federation, 59(5):242–248.

    Google Scholar 

  • Reckhow, D.A., Singer, P.C., Malcolm, R.L., 1990. Chlorination of humic materials: byproduct formation and chemical interpretations. Environmental Science and Technology, 24(11):1655–1664. [doi:10.1021/es00081a-005]

    Article  Google Scholar 

  • Schreiber, B., Brinkmann, T., Schmalz, V., Worch, E., 2005. Adsorption of dissolved organic matter onto activated carbon—the influence of temperature, absorption wave-length, and molecular size. Water Research, 39(15):3449–3456. [doi:10.1016/j.watres.2005.05.050]

    Article  Google Scholar 

  • Thurman, E.M., Malcolm, R.L., 1981. Preparative isolation of aquatic humic substances. Environmental Science and Technology, 15(4):463–466. [doi:10.1021/es00086a 012]

    Article  Google Scholar 

  • Vahala, R., Langvik, V.A., Laukkanen, R., 1999. Controlling adsorbable organic halogens (AOX) and trihalomethanes (THM) formation by ozonation and two-step granule activated carbon (GAC) filtration. Water Science and Technology, 40(9):249–256. [doi:10.1016/S0273-1223(99)00663-0]

    Article  Google Scholar 

  • Villanueva, C.M., Kogevinasa, M., Grimaltb, J.O., 2003. Haloacetic acids and trihalomethanes in finished drinking waters from heterogeneous sources. Water Research, 37(4):953–958. [doi:10.1016/S0043-1354(02)00411-6]

    Article  Google Scholar 

  • Westerhoff, P., Chao, P., Mash, H., 2004. Reactivity of natural organic matter with aqueous chlorine and bromine. Water Research, 38(6):1502–1513. [doi:10.1016/j.watres.2003.12.014]

    Article  Google Scholar 

  • White, D.M., Garland, D.S., Narr, J., Woolard, C.R., 2003. Natural organic matter and DBP formation potential in Alaskan water supplies. Water Research, 37(4):939–947. [doi:10.1016/S0043-1354(02)00425-6]

    Article  Google Scholar 

  • Xue, S., Zhao, Q.L., Wei, L.L., Wang, L.N., Liu, Z.G., 2007. Fate of secondary effluent dissolved organic matter during soil-aquifer treatment. Chinese Science Bulletin, 52(18):2496–2505. [doi:10.1007/s11434-007-0339-1]

    Article  Google Scholar 

  • Zhao, Q.L., Xue, S., You, S.J., Wang, L.N., 2007. Removal and transformation of organic matter during soil-aquifer treatment. Journal of Zhejiang University SCIENCE A, 8(5):712–718. [doi:10.1631/jzus.2007.A0712]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-liang Zhao.

Additional information

Project (No. 2004CB418505) supported by the National Basic Research Program (973) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, Ll., Zhao, Ql., Xue, S. et al. Removal and transformation of dissolved organic matter in secondary effluent during granular activated carbon treatment. J. Zhejiang Univ. Sci. A 9, 994–1003 (2008). https://doi.org/10.1631/jzus.A071508

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A071508

Key words

CLC number

Navigation