Skip to main content
Log in

Trimming self-intersections in swept volume solid modeling

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Swept volume solid modeling has been applied to many areas such as NC machining simulation and verification, robot workspace analysis, collision detection, and CAD. But self-intersections continue to be a challenging problem in the boundary representation of swept volume solids. A novel algorithm is presented in this paper to trim self-intersection regions in swept volume solids modeling. This trimming algorithm consists of two major steps: (1) roughly detecting self-intersection regions by checking intersections or overlapping of the envelop profiles; (2) splitting the whole envelop surfaces of the swept volume solid into separate non-self-intersecting patches to trim global self-intersections, and to trim local self-intersections, dividing local self-intersecting regions into patches and replacing self-intersecting patches with non-self-intersecting ones. Examples show that our algorithm is efficient and robust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Malek, K., Yeh, H.J., 1997. Geometric representation of the swept volume using Jacobian rank-deficiency conditions. Computer-Aided Design, 29(6):457–468. [doi:10.1016/S0010-4485(96)00097-8]

    Article  Google Scholar 

  • Abdel-Malek, K., Yang, J., Blackmore, D., Ken, J., 2006. Swept volumes: foundations, perspectives and applications. Int. J. Shape Modeling, 12(1):87–127. [doi:10.1142/S0218654306000858]

    Article  MATH  Google Scholar 

  • Andersson, L.E., Peters, T.J., Stewart, N.F., 1998. Self-intersection of composite curves and surfaces. Computer Aided Geometric Design, 15(5):507–527. [doi:10.1016/S0167-8396(98)00005-3]

    Article  MathSciNet  MATH  Google Scholar 

  • Blackmore, D., Leu, M.C., 1992. Analysis of swept volume via Lie group and differential equations. Int. J. Rob. Res., 11(6):516–537. [doi:10.1177/027836499201100602]

    Article  Google Scholar 

  • Blackmore, D., Leu, M.C., Wang, L.P., 1997a. The sweep-envelop differential equation algorithm and its application to NC machining verification. Computer-Aided Design, 29(9):629–637. [doi:10.1016/S0010-4485(96)00101-7]

    Article  Google Scholar 

  • Blackmore, D., Leu, M.C., Wang, L.P., Jiang, H., 1997b. Swept volumes: a retrospective and prospective view. Neural, Parallel and Scientific Computations, 5:81–102.

    MathSciNet  Google Scholar 

  • Blackmore, D., Samulyak, R., Leu, M.C., 1999. Trimming swept volumes. Computer-Aided Design, 31(3):215–223. [doi:10.1016/S0010-4485(99)00017-2]

    Article  MATH  Google Scholar 

  • Cohen, E., Ho, C.C., 2000. Surface Self-intersection. In: Lyche, T., Schumaker, L.L. (Eds.), Mathematical Methods for Curves and Surfaces, p.183–194.

  • Kim, Y.J., Varadhan, G., Leu, M.C., Dinesh, M., 2004. Fast swept volume approximation of complex polyhedral models. Computer-Aided Design, 36:1013–1027. [doi:10.1016/j.cad.2004.01.004]

    Article  Google Scholar 

  • Mann, S., Bedi, S., 2002. Generalization of the imprint method to general surfaces of revolution for NC machining. Computer-Aided Design, 34(5):373–378. [doi:10.1016/S0010-4485(01)00103-8]

    Article  Google Scholar 

  • Martin, R.R., Stephenson, P.C., 1990. Sweeping of three-dimensional objects. Computer-Aided Design, 22(4):223–234. [doi:10.1016/0010-4485(90)90051-D]

    Article  MATH  Google Scholar 

  • Peternell, M., Pottmann, H., Steiner, T., Zhao, H., 2005. Swept volumes. Computer Aided Design and Applications, 2:95–104.

    Article  Google Scholar 

  • Piegl, L., Tiller, W., 1997. The NURBS Book. Springer Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Pottmann, H., Peternell, M., 2000. Envelops—Computational Theory and Applications. Proc. Spring Conf. on Computer Graphics and its Applications, p.3–23.

  • Requicha, A.A.G., Voelcker, H.B., 1982. Solid modeling: a historical summary and contemporary assessment. IEEE Computer Graph. Appl., 2(2):9–24. [doi:10.1109/MCG.1982.1674149]

    Article  Google Scholar 

  • Rossignac, J., Kim, J.J., Song, S.C., Suh, K.C., Joung, C.B., 2007. Boundary of the volume swept by a free-form solid in screw motion. Computer-Aided Design, 39(9):745–755. [doi:10.1016/j.cad.2007.02.016]

    Article  Google Scholar 

  • Wang, W.P., Wang, K.K., 1986. Geometric modeling for swept volume of moving solids. IEEE Computer Graph. Appl., 6(12):8–17.

    Article  Google Scholar 

  • Weinert, K., Du, S.J., Damm, P., Stautner, M., 2004. Swept volume generation for the simulation of machining process. Int. J. Machine Tools Manufacture, 44(6):617–628. [doi:10.1016/j.ijmachtools.2003.12.003]

    Article  Google Scholar 

  • Weld, J., Leu, M., 1990. Geometric representation of swept volume with application to polyhedral objects. Int. J. Rob. Res., 9(5):105–117. [doi:10.1177/027836499000900507]

    Article  Google Scholar 

  • Xu, Z.Q., Chen, Z.Y., Ye, X.Z., Zhang, S.Y., 2007. Approximate the Swept Volume of Revolutions along Curved Trajectories. Proc. ACM Symp. on Solid and Physical Modeling, p.309–314. [doi:10.1145/1236246.1236290]

  • Yu, H.B., Wang, Y.X., 2003. Swept volume and its application to mechanical design. J. Eng. Graph., 24(1):63–70 (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to San-yuan Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 60473106), the Hi-Tech Research and Development Program (863) of China (Nos. 2007AA01Z311 and 2007AA04Z1A5), and the National Research Foundation for the Doctoral Program of Higher Education of China (No. 20060335114)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Zq., Ye, Xz., Chen, Zy. et al. Trimming self-intersections in swept volume solid modeling. J. Zhejiang Univ. Sci. A 9, 470–480 (2008). https://doi.org/10.1631/jzus.A071357

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A071357

Key words

CLC number

Navigation