Skip to main content
Log in

Hole transport and phonon scattering in epitaxial PbSe films

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The combined characterizations of mobility and phonon scattering spectra allow us to probe hole transport process in epitaxial PbSe crystalline films grown by molecular beam epitaxy (MBE). The measurements of Hall effect show p-type conductivity of PbSe epitaxial films. At 295 K, the PbSe samples display hole concentrations of (5∼8)×1017 cm−3 with mobilities of about 300 cm2/(V·s), and at 77 K the hole mobility is as high as 3×103 cm2/(V·s). Five scattering mechanisms limiting hole mobilities are theoretically analyzed. The calculations and Raman scattering measurements show that, in the temperatures between 200 and 295 K, the scattering of polar optical phonon modes dominates the impact on the observed hole mobility in the epitaxial PbSe films. Raman spectra characterization observed strong optical phonon scatterings at high temperature in the PbSe epitaxial films, which is consistent with the result of the measured hole mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allgaier, R.S., Scanlon, W.W., 1958. Mobility of electrons and holes in PbS, PbSe, and PbTe between room temperature and 4.2 K. Physical Review, 111(4):1029–1037. [doi:10.1103/PhysRev.111.1029]

    Article  Google Scholar 

  • Aven, M., Segall, B., 1963. Carrier mobility and shallow impurity states in ZnSe and ZnTe. Physical Review, 130(1):81–91. [doi:10.1103/PhysRev.130.81]

    Article  Google Scholar 

  • Bardeen, J., Shockley, W., 1950. Deformation potential and mobilities in non-polar crystals. Physical Review, 80(1):72–80. [doi:10.1103/PhysRev.80.72]

    Article  MathSciNet  MATH  Google Scholar 

  • Berlincourt, D., Jaffr, H., 1963. Eletroelastic properties of the sulfides, selenides, and tellurides of zinc and cadmium. Physical Review, 129(3):1009–1017. [doi:10.1103/PhysRev.129.1009]

    Article  Google Scholar 

  • Brown, D., Bray, R., 1962. Analysis of lattice and ionized impurity scattering in p-type Germanium. Physical Review, 127:1593–1602.

    Article  Google Scholar 

  • Cao, C.F., Wu, H.Z., Si, J.X., Xu, T.N., Chen, J., Shen, W.Z., 2006. Abnormal Raman spectra of PbTe crystalline thin films grown by molecular beam epitaxy. Acta Physica Sinica, 55:2021–2025 (in Chinese).

    Google Scholar 

  • Chattopadhyay, H.D., Queisser, H.J., 1981. Electron scattering by ionized impurities in semiconductors. Reviews of Modern Physics, 53(4):745–768. [doi:10.1103/RevModPhys.53.745]

    Article  Google Scholar 

  • Chen, J., Shen, W.Z., 2006. Raman study of phonon modes and disorder effects in Pb1−x SrxSe alloys grown by molecular beam epitaxy. J. Appl. Phys., 99(1):013513–013517. [doi:10.1063/1.2159079]

    Article  MathSciNet  Google Scholar 

  • Dashevsky, Z., Belenchuk, A., Gartstein, E., Shapoval, O., 2004. PbTe films grown by hot wall epitaxy on sapphire substrates. Thin Solid Films, 461(2):256–265. [doi:10.1016/j.tsf.2004.01.087]

    Article  Google Scholar 

  • Hohnke, D.K., Kaiser, S.W., 1974. Epitaxial PbSe and Pb1−x SnxSe: Growth and electrical properties. J. Appl. Phys., 45(2):892–897. [doi:10.1063/1.1663334]

    Article  Google Scholar 

  • Lee, T.D., Low, F.E., Pines, D., 1953. The motion of slow electrons in a polar crystal. Physical Review, 90(2):297–302. [doi:10.1103/PhysRev.90.297]

    Article  MathSciNet  MATH  Google Scholar 

  • Martinez, G., Schluter, M., 1975. Electronic structure of PbSe and PbTe. I. Band structures, densities of states and effective masses. Phys. Rev. B, 11(2):651–659. [doi:10.1103/PhysRevB.11.651]

    Article  Google Scholar 

  • Matsushita, Y., Bluhm, H., Geballe, T.H., Fisher, I.R., 2005. Evidence for change kondo effect in superconducting Tl-doped PbTe. Physical Review Letters, 94(15):157002–157005. [doi:10.1103/PhysRevLett.94.157002]

    Article  Google Scholar 

  • Ovsyannikov, S.V., Shchennikov, V.V., Ponosov, Y.S., Gudina, S.V., Guk, V.G., Skipetrov, E.P., Mogilenskikh, V.E., 2004. Application of the high-pressure thermoelectric technique for characterization of semiconductor microsamples: PbX-based compounds. Journal of Physics D: Applied Physics, 37(8):1151–1157. [doi:10.1088/0022-3727/37/8/002]

    Article  Google Scholar 

  • Romero, H.E., Drndic, M., 2005. Coulomb blockade and hopping conduction in PbSe quantum dots. Physical Review Letters, 95(15):156801–156804. [doi:10.1103/PhysRevLett.95.156801]

    Article  Google Scholar 

  • Shi, Z., Lv, X., Zhao, F., Majumdar, A., Ray, D., Singh, R., Yan, X.J., 2004. [110] orientated lead salt midinfrared lasers. Appl. Phys. Lett., 85(15):2999–3001. [doi:10.1063/1.1799240]

    Article  Google Scholar 

  • Si, J.X., Wu, H.Z., Xu, T.N., Cao, C.F., Huang, Z.C., 2005. Microstructural properties of single crystalline PbTe thin films grown on BaF2(111) by molecular beam epitaxy. Chin. Phys. Lett., 22:2352–2356.

    Google Scholar 

  • Springholz, G., Ueta, A.Y., Fran, N., Bauer, G., 1996. Spiral growth and threading dislocations for molecular beam epitaxy of PbTe on BaF2(111) studied by scanning tunneling microscopy. Appl. Phys. Lett., 69(19):2822–2824. [doi:10.1063/1.116855]

    Article  Google Scholar 

  • Tetyorkin, V.V., Sipatov, A.Y., Sizov, F.F., Fedorenko, A.I., Fedorov, A., 1996. (001)-oriented lead selenide films grown on silicon substrates. Infrared Physics & Technology, 37(3):379–384. [doi:10.1016/1350-4495(95)00065-8]

    Article  Google Scholar 

  • Upadhyaya, K.S., Yadav, M., Upadhyaya, G.K., 2002. Lattice dynamics of IV–VI ionic semiconductors: an application to lead chalcogenides. Phys. Stat. Sol. (B), 229(3):1129–1138. [doi:10.1002/1521-3951(200202)229:3〈1129::AIDPSSB1129〉3.0.CO;2-6]

    Article  Google Scholar 

  • Wu, H.Z., Dai, N., McCann, P.J., 2002. Experimental determination of deformation potentials and band non-parabolicity parameters for PbSe. Phys. Rev. B, 66(4):045303–045309. [doi:10.1103/PhysRevB.66.045303]

    Article  Google Scholar 

  • Xu, T.N., Wu, H.Z., Si, J.X., Cao, C.F., 2007. Observation of triangle pits in PbSe grown by molecular beam epitaxy. Appl. Surf. Science, 253(12):5457–5461. [doi:10.1016/j.apsusc.2006.12.028]

    Article  Google Scholar 

  • Yang, A.L., Wu, H.Z., Li, Z., Qiu, D.J., Chang, Y., Li, J.F., McCann, P.J., Fang, X.F., 1999. Raman scattering study of PbSe growth on (111) BaF2 substrate. Chin. Phys. Lett., 17:606–609.

    Google Scholar 

  • Zogg, H., Huppi, M., 1985. Growth of high quality epitaxial PbSe onto Si using a (Ca, Ba)F2 buffer layer. Appl. Phys. Lett., 47(2):133–135. [doi:10.1063/1.96239]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-zhen Wu.

Additional information

Project (No. 10434090) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Si, Jx., Wu, Hz., Xu, Tn. et al. Hole transport and phonon scattering in epitaxial PbSe films. J. Zhejiang Univ. Sci. A 9, 137–142 (2008). https://doi.org/10.1631/jzus.A071350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A071350

Key words

CLC number

Navigation