Skip to main content
Log in

Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

An acoustic pressure amplifier (APA) is capable of improving the match between a thermoacoustic engine and a load by elevating pressure ratio and acoustic power output. A standing-wave thermoacoustic engine driving a resistance-and-compliance (RC) load through an APA was simulated with linear thermoacoustics to study the impact of load impedance on the performance of the thermoacoustic system. Based on the simulation results, analysis focuses on the distribution of pressure amplitude and velocity amplitude in APA with an RC load of diverse acoustic resistances and compliance impedances. Variation of operating parameters, including pressure ratio, acoustic power, hot end temperature of stack, etc., versus impedance of the RC load is presented and analyzed according to the abovementioned distribution. A verifying experiment has been performed, which indicates that the simulation can roughly predict the system operation in the fundamental-frequency mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arman, B., Wollan, J.J., Swift, G.W., Backhaus, S., 2003. Thermoacoustic Natural Gas Liquefiers and Recent Developments. Cryogenics and Refrigeration, Proceedings of ICCR’2003, p. 123–127.

  • Bao, R., Chen, G.B., Tang, K., Cao, W.H., Jin, T., 2006a. Thermoacoustically driven pulse tube refrigeration below 80 K by introducing an acoustic pressure amplifier. Applied Physics Letters, 89(21):211915. [doi:10.1063/1.2387939]

    Article  Google Scholar 

  • Bao, R., Chen, G.B., Tang, K., Jia, Z.Z., Cao, W.H., 2006b. Effect of RC load on performance of thermoacoustic engine. Cryogenics, 46(9):666–671. [doi:10.1016/j.cryogenics.2006.04.002]

    Article  Google Scholar 

  • Dai, W., Luo, E.C., Hu, J.Y., Chen, Y.Y., 2005. A novel coupling configuration for thermoacoustically-driven pulse tube coolers: Acoustic amplifier. Chinese Science Bulletin, 50(18):2112–2114. [doi:10.1360/982005-482]

    Article  Google Scholar 

  • Duthil, P., Baltean Carlès, D., Bétrancourt, A., François, M.X., Yu, Z.B., Thermeau, J.P., 2006. Experiments and valve modeling in thermoacoustic device. Advances in Cryogenic Engineering, 51(B):1095–1102.

    Article  Google Scholar 

  • Hu, J.Y., Luo, E.C., Dai, W., Zhou, Y., 2007. A heat-driven thermoacoustic cryocooler capable of reaching below liquid hydrogen temperature. Chinese Science Bulletin, 52(4):574–576. [doi:10.1007/s11434-007-0104-5]

    Article  Google Scholar 

  • Matsubara, Y., Dai, W., Onishi, T., Kushino, A., Sugita, H., 2003. Thermally Actuated Pressure Wave Generators for Pulse Tube Cooler. Cryogenics and Refrigeration, Proceedings of ICCR’2003, p.57–60.

  • Nguyen, C.T., Yeckley, A.J., Schieb, D.J., Haberbusch, M.S., 2004. Hydrogen/oxygen propellant densifier thermoacoustic Stirling heat engine. Advances in Cryogenic Engineering, 49(B):1703–1709.

    Article  Google Scholar 

  • Swift, G.W., 2002. Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators. Acoustical Society of America Publications, Sewickley, PA.

    Google Scholar 

  • Tang, K., Chen, G.B., Kong, B., 2004. A 115 K thermoacoustically driven pulse tube refrigerator with low onset temperature. Cryogenics, 44(5):287–291. [doi:10.1016/j.cryogenics.2003.12.004]

    Article  Google Scholar 

  • Tang, K., Chen, G.B., Jin, T., Bao, R., Kong, B., Qiu, L.M., 2005. Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator. Cryogenics, 45(3):185–191. [doi:10.1016/j.cryogenics.2004.10.002]

    Article  Google Scholar 

  • Tang, K., Chen, G.B., Jin, T., Bao, R., Li, X.M., 2006. Performance comparison of thermoacoustic engines with constant-diameter resonant tube and tapered resonant tube. Cryogenics, 46(10):699–704. [doi:10.1016/j.cryogenics.2006.04.006]

    Article  Google Scholar 

  • Tang, K., Bao, R., Chen, G.B., Qiu, Y., Shou, L., Huang, Z.J., Jin, T., 2007. Thermoacoustically driven pulse tube cooler below 60 K. Cryogenics, 47(9–10):526–529. [doi:10.1016/j.cryogenics.2007.04.003]

    Article  Google Scholar 

  • Yu, G.Y., Luo, E.C., Dai, W., Wu, Z.H., 2007. An energyfocused thermoacoustic-Stirling heat engine reaching a high pressure ratio of 1.40. Cryogenics, 47(2):132–134. [doi:10.1016/j.cryogenics.2006.12.001]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Jin.

Additional information

Project supported by the National Natural Sciences Foundation of China (No. 50536040), the University Doctoral Subject Special Foundation of China (No. 20050335047), the Postdoctoral Science Foundation of Zhejiang Province (No. 2006-bsh-21), and the Natural Science Foundation of Zhejiang Province (No. Y107229), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, K., Huang, Zj., Jin, T. et al. Impact of load impedance on the performance of a thermoacoustic system employing acoustic pressure amplifier. J. Zhejiang Univ. Sci. A 9, 79–87 (2008). https://doi.org/10.1631/jzus.A071340

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A071340

Key words

CLC number

Navigation