Skip to main content
Log in

Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The remediation of groundwater which contains chlorinated organic compounds (COCs) by nanoscale bimetallic catalysts has received increasing interest in recent years. This report presents the dechlorination of 2,4-dichlorophenol (2,4-DCP) by Pd-Fe bimetallic nanoparticles in the presence of humic acid (HA) to investigate the feasibility of using Pd-Fe for the in situ remediation of contaminated groundwater. Our experimental results indicated that HA had an adverse effect on the dechlorination of 2,4-DCP by Pd-Fe nanoparticles. The rate constant k values of 2,4-DCP dechlorination were 0.017, 0.013, 0.009, 0.006 and 0.004 min−1 for HA concentrations of 0, 5, 10, 15 and 20 mg/L, respectively. The relationship between HA dosage and k values can be described as a linear model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allen-King, R.M., Halket, R.M., Burris, D.R., 1997. Reductive transformation and sorption of cis-and trans-1,2-dichloroethene in a metallic iron-water system. Environ. Toxicol. Chem., 16(3):424–429. [doi:10.1897/1551-5028(1997)016〈0424:RTASOC〉2.3.CO;2]

    Google Scholar 

  • Burris, D.R., Campbell, T.J., Manoranjan, V.S., 1995. Sorption of trichloroethylene and etrachloroethylene in a batch reactive metallic iron-water system. Environ. Sci. Technol., 29(11):2850–2855. [doi:10.1021/es00011a022]

    Article  Google Scholar 

  • Cheng, S.F., Wu, S.C., 2001. Feasibility of using metals to remediate water containing TCE. Chemosphere, 43(8):1023–1028. [doi:10.1016/S0045-6535(00)00263-0]

    Article  Google Scholar 

  • Coq, B., Figueras, F., 2001. Bimetallic palladium catalysts: influence of the co-metal on the catalyst performance. J. Mol. Catal. A-Chem., 173(1–2):117–134. [doi:10.1016/S1381-1169(01)00148-0]

    Article  Google Scholar 

  • Gurtis, G.P., Reinhard, M., 1994. Reductive dehalogenation of hexachloroethane, carbon tetrachloride, and bromoform by anthrahydroquinone disulfate and humic acid. Environ. Sci. Technol., 28(13):2393–2401. [doi:10.1021/es00062a026]

    Article  Google Scholar 

  • Doong, R.A., Lai, Y.L., 2005. Dechlorination of tetrachloroethylene by palladized iron in the presence of humic acid. Water Res., 39(11):2309–2318. [doi:10.1016/j.watres.2005.04.036]

    Article  Google Scholar 

  • Doong, R.A., Lai, Y.L., 2006. Effect of metal ions and humic acid on the dechlorination of tetrachloroethylene by zerovalent iron. Chemosphere, 64(3):371–378. [doi:10.1016/j.chemosphere.2005.12.038]

    Article  Google Scholar 

  • He, F., Zhao, D., 2005. Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol., 39(9):3314–3320. [doi:10.1021/es048743y]

    Article  Google Scholar 

  • Johnson, T.L., Fish, W., Gorby, Y.A., Tratnyek, P.G., 1998. Degradation of carbon tetrachloride by iron metal: complexation effects on the oxide surface. J. Contam. Hydrol., 29(4):379–398. [doi:10.1016/S0169-7722(97)00063-6]

    Article  Google Scholar 

  • Lien, H.L., Zhang, W.X., 2001. Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 191:97–105.

    Article  Google Scholar 

  • Muftikian, R., Nebesny, K., Fernando, Q., Korte, N., 1996. X-ray photoelectron spectra of the palladium-iron bimetallic surface used for the rapid dechlorination of chlorinated organic environmental contaminants. Environ. Sci. Technol., 30(12):3593–3596. [doi:10.1021/es960289d]

    Article  Google Scholar 

  • Murphy, E.M., Zachara, J.M., Smith, S.C., 1990. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol., 24(10):1507–1516. [doi:10.1021/es00080a009]

    Article  Google Scholar 

  • Oliver, B.G., Nicol, K.D., 1982. Chlorobenzenes in sediments, water, and selected fish from Lakes Superior, Huron, Erie, and Ontario. Environ. Sci. Technol., 16(8):532–536. [doi:10.1021/es00102a019]

    Article  Google Scholar 

  • Schrick, B., Blough, J.L., Jones, A.D., Mallouk, T.E., 2002. Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoscales. Chem. Mater., 14(12):5140–5147. [doi:10.1021/cm020737i]

    Article  Google Scholar 

  • Schwarzenbach, R.P., Molnar-Kubica, E., Giger, W., Wakeham, S.G., 1979. Distribution, residence time, and fluxes of tetrachloroethylene and 1,4-dichlorobenzene in Lake Zurich, Switzerland. Environ. Sci. Technol., 13(11): 1367–1373. [doi:10.1021/es60159a013]

    Article  Google Scholar 

  • Tratnyek, P.G., Schere, M.M., Hu, S., 2001. Effects of natural organic matter anthropogenic surfactants, and model quinones on the reduction of contaminants by zerovalent iron. Water Res., 35(18):4435–4443. [doi:10.1016/S0043-1354(01)00165-8]

    Article  Google Scholar 

  • Wang, C.Y., Chen, Z.Y., Cheng, B., Zhu, Y.R., Liu, H.J., 1999. The preparation, surface modification, and characterization of metallic α-Fe nanoparticles. Chin. J. Chem. Physics, 12:670–674.

    Google Scholar 

  • Wei, J.J., Liu, Y., Wang, D.H., 2006. Catalytic hydrodechlorination of 2,4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res., 40(2):348–354. [doi:10.1016/j.watres.2005.10.017]

    Article  Google Scholar 

  • Wu, L.F., Stephen, M.C., 2006. Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoscales. Chemosphere, 63(2):285–292. [doi:10.1016/j.chemosphere.2005.07.021]

    Article  Google Scholar 

  • Xie, L., Shang, C., 2005. Role of humic acid and quinone model compounds in bromate reduction by zerovalent iron. Environ. Sci. Technol., 39(4):1092–1100. [doi:10.1021/es049027z]

    Article  Google Scholar 

  • Xu, X.H., Zhou, H.Y., He, P., Wang, D.H., 2005a. Catalytic dechlorination kinetics of p-dichlorobenzene over Pd/Fe catalysts. Chemosphere, 58(8):1135–1140. [doi:10.1016/j.chemosphere.2004.07.010]

    Article  Google Scholar 

  • Xu, X.H., Zhou, H.Y., Wang, D.H., 2005b. Structure relationship for catalytic dechlorination rate of dichlorobenzenes in water. Chemosphere, 58(11):1497–1502. [doi:10.1016/j.chemosphere.2004.11.071]

    Article  Google Scholar 

  • Zhang, W.X., Wang, C.B., Lien, H.L., 1998. Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today, 40(4):387–395. [doi:10.1016/S0920-5861(98)00067-4]

    Article  Google Scholar 

  • Zhu, B.W., Lim, T.T., Feng, J., 2006. Reductive dechlorination of 1,2,4-trichlorobenzene with palladized nanoscale Fe0 particles supported on chitosan and silica. Chemosphere, 65(7):1137–1146. [doi:10.1016/j.chemosphere.2006.04.012]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-hua Xu.

Additional information

Project supported by the National Natural Science Foundation of China (No. 20407015) and the Program for the New Century Excellent Talents in University (No. NCET-06-0525), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Wo, Jj., Cissoko, N. et al. Kinetics of 2,4-dichlorophenol dechlorination by Pd-Fe bimetallic nanoparticles in the presence of humic acid. J. Zhejiang Univ. Sci. A 9, 118–124 (2008). https://doi.org/10.1631/jzus.A071313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A071313

Key words

CLC number

Navigation