Skip to main content
Log in

Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The ultrasonic motor (USM) possesses heavy nonlinearities which vary with driving conditions and load-dependent characteristics such as the dead-zone. In this paper, an identification method for the rotary travelling-wave type ultrasonic motor (RTWUSM) with dead-zone is proposed based on a modified Hammerstein model structure. The driving voltage contributing effect on the nonlinearities of the RTWUSM was transformed to the change of dynamic parameters against the driving voltage. The dead-zone of the RTWUSM is identified based upon the above transformation. Experiment results showed good agreement between the output of the proposed model and actual measured output.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aoyagi, M., Tomikawa, Y., Takano, T., 1996. Simplified equivalent circuit of the ultrasonic motor and its applications. Ultrasonics, 34(2–5):275–278. [doi:10.1016/0041624X(95)0071-A]

    Article  Google Scholar 

  • Bigdeli, N., Haeri, M., 2004. Modeling of an Ultrasonic Motor Based on Hammerstein Model Structure. 8th Control, Automation, Robotics and Vision Conference, ICARCV-04, 2(6–9):1374–1378. [doi:10.1109/ICARCV.2004.1469047]

    Google Scholar 

  • Ding, F., Chen, T., 2005. Identification of Hammerstein nonlinear ARMAX systems. Automatica, 41(9):1479–1489. [doi:10.1016/j.automatica.2005.03.026]

    Article  MathSciNet  MATH  Google Scholar 

  • Frangi, A., Corigliano, A., Binci, M., Faure, P., 2005. Finite element modeling of a rotating piezoelectric ultrasonic motor. Ultrasonics, 43(9):747–755. [doi:10.1016/j.ultras.2005.04.005]

    Article  Google Scholar 

  • Hagood IV, N.W., McFarland, A.J., 1995. Modeling of a piezoelectric rotary ultrasonic motor. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 42(2):210–224. [doi:10.1109/58.365235]

    Article  Google Scholar 

  • Jeong, S.H., Lee, H.K., Kim, Y.J., Kim, H.H., Lim, K.J., 1997. Vibration Analysis of the Stator in Ultrasonic Motor by FEM. Proceedings of the 5th International Conference on Properties and Applications of Dielectric Materials, ICPADM-97. Korea, p.1091–1094. [doi:10.1109/ICPADM.1997.616637]

  • Jin, L., Zhu, M., Zhao, C., 1998. Position and speed controlling for traveling wave ultrasonic motors. Journal of Experimental Mechanics, 13(2):263–266 (in Chinese).

    Google Scholar 

  • Kagawa, Y., Tsuchiya, T., Kataoka, T., Yamabuchi, T., Furukawa, T., 1996. Finite element simulation of dynamic responses of piezoelectric actuators. Journal of Sound and Vibration, 191(4):519–538. [doi:10.1006/jsvi.1996.0138]

    Article  Google Scholar 

  • Sashida, T., 1993. An Introduction to Ultrasonic Motors. Oxford Science Publication, Oxford.

    Google Scholar 

  • Schmidt, J.P., Hagedorn, P., Miao, B.Q., 1996. A note on the contact problem in an ultrasonic travelling wave motor. Int. J. Non-Linear Mechanics, 31(6):915–924. [doi:10.1016/S0020-7462(96)00112-6]

    Article  MATH  Google Scholar 

  • Senjyu, T., Kashiwagi, T., Uezato, K., 2001. Position control of ultrasonic motors using MRAC with dead-zone compensation. IEEE Transactions on Industrial Electronics, 48(6):1278–1285. [doi:10.1109/41.969411]

    Article  Google Scholar 

  • Senjyu, T., Nakamura, M., Urasaki, N., Sekine, H., Funabashi, T., 2006. Mathematical Model of Ultrasonic Motors for Speed Control. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition, APEC 06, p.290–295. [doi:10.1109/APEC.2006.1620553]

  • Tomikawa, Y., Yaginuma, M., Hirose, S., Takano, T., 1991. An equivalent circuit expression of an ultrasonic motor and measurement of its elements. Jpn. J. Appl. Phys., 30(Part 1, 9B):2398–2401. [doi:10.1143/JJAP.30.2398]

    Article  Google Scholar 

  • Ueha, S., Tomikawa, Y., 1993. Ultrasonic Motors: Theory and Applications. Clarendon Press, Oxford.

    Google Scholar 

  • Voros, J., 1997. Parameter identification of discontinuous Hammerstein systems. Automatica, 33(6):1141–1146. [doi:10.1016/S0005-1098(97)00009-5]

    Article  MathSciNet  MATH  Google Scholar 

  • Voros, J., 2003. Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Transactions on Automatic Control, 48(12):2203–2206. [doi:10.1109/TAC.2003.820146]

    Article  MathSciNet  Google Scholar 

  • Wallaschek, J., 1998. Contract mechanics of piezoelectric ultrasonic motors. Smart Mater. Struct., 7(3):369–381. [doi:10.1088/0964-1726/7/3/011]

    Article  Google Scholar 

  • Wang, S.Y., 2004. A finite element model for the static and dynamic analysis of a piezoelectric bimorph. International Journal of Solids and Structures, 41(15):4075–4096. [doi:10.1016/j.ijsolstr.2004.02.058]

    Article  MATH  Google Scholar 

  • Yang, M., Que, P., 2001. Performances estimation of a rotary travelling-wave ultrasonic motor based on two-dimension analytical model. Ultrasonics, 39(2):115–120. [doi:10.1016/S0041-624X(00)00053-6]

    Article  Google Scholar 

  • Zhu, M., 2004. Contact analysis and mathematical modeling of traveling wave ultrasonic motors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 51(6):668–679. [doi:10.1109/TUFFC.2004.1308725]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin-liang Zhang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 60572055) and the Natural Science Foundation of Guangxi Province (No. 0339068), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Xl., Tan, Yh. Modelling of ultrasonic motor with dead-zone based on Hammerstein model structure. J. Zhejiang Univ. Sci. A 9, 58–64 (2008). https://doi.org/10.1631/jzus.A071146

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.A071146

Key words

CLC number

Navigation