Skip to main content
Log in

Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Sequential methodology based on the application of three types of experimental designs was used to optimize the fermentation conditions for elastase production from mutant strain ZJUEL31410 of Bacillus licheniformis in shaking flask cultures. The optimal cultivation conditions stimulating the maximal elastase production consist of 220 r/min shaking speed, 25 h fermentation time, 5% (v/v) inoculums volume, 25 ml medium volume in 250 ml Erlenmeyer flask and 18 h seed age. Under the optimized conditions, the predicted maximal elastase activity was 495 U/ml. The application of response surface methodology resulted in a significant enhancement in elastase production. The effects of other factors such as elastin and the growth factor (corn steep flour) on elastase production and cell growth were also investigated in the current study. The elastin had no significant effect on enzyme-improved production. It is still not clear whether the elastin plays a role as a nitrogen source or not. Corn steep flour was verified to be the best and required factor for elastase production and cell growth by Bacillus licheniformis ZJUEL31410.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Box, G.E.P., Wilson, K.B., 1951. On the experimental attainment of optimum conditions. J. Roy Stat. Soc. B, 13: 145.

    Google Scholar 

  • Box, G.E.P., Hunter, W.G., 1978. Statistics for Experimenters. John Wiley and Sons, NY.

    Google Scholar 

  • Box, G.E.P., Draper, N.R., 1987. Empirical Model-Building and Response Surfaces. John Wiley and Sons, NY, p.669.

    Google Scholar 

  • Chen, Q.H., He, G.Q., Mokhtar, A.M.A., 2002. Optimization of medium composition for the production of elastase by Bacillus sp. EL31410 with response surface methodology. Enzyme Microb. Technol., 30(5):667–672. [doi:10.1016/S0141-0229(02)00028-5]

    Article  CAS  Google Scholar 

  • Chen, Q.H., He, G.Q., Schwarz, P., 2004. Studies on cultivation kinetics for elastase production by Bacillus sp. EL31410. J. Agric. Food Chem., 52(11):3356–3359. [doi:10.1021/jf0303161]

    Article  PubMed  CAS  Google Scholar 

  • Clark, D.J., Hawrylik, S.J., Kavanagh, E., Opheim, D.J., 2000. Purification and characterization of a unique alkaline elastase from Micrococcus luteus. Protein Expr. Purif., 18(1):46–55. [doi:10.1006/prep.1999.1166]

    Article  PubMed  CAS  Google Scholar 

  • de O. Souza, M.C., Roberto, I.C., Milagres, A.M.F., 1999. Solid-state fermentation for xylanase production by Thermoascus aurantiacus using response surface methodology. Appl. Microbial. Biotechnol., 52(6):768–772. [doi:10.1007/s002530051589]

    Article  Google Scholar 

  • Haaland, P.D., 1989. Experimental Design in Biotechnology. Dekker, New York.

    Google Scholar 

  • He, G.Q., Chen, Q.H., Ju, X.J., Shi, N.D., 2004. Improved elastase production by Bacillus sp. EL31410-further optimization and kinetics studies of culture medium for batch fermentation. J. Zhejiang Univ. Sci., 5(2):149–156. [doi:10.1631/jzus.2004.0149]

    Article  PubMed  CAS  Google Scholar 

  • Janda, J.M., Abbott, S., 1999. Identification and initial characterization of elastase activity associated with Vibrio cholerae. Curr. Microbiol., 39(2):73–78. [doi:10.1007/s002849900421]

    Article  PubMed  CAS  Google Scholar 

  • Kalil, S.J., Maugeri, F., Rodrigues, M.I., 2000. Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochem., 35(6):539–550. [doi:10.1016/S0032-9592(99)00101-6]

    Article  CAS  Google Scholar 

  • Kapat, A., Jung, J.K., Park, Y.H., 2001. Enhancement of glucose oxidase production in batch cultivation of recombination Saccharomyces cerevisiae: optimization of oxygen transfer condition. J. Appl. Microbiol., 90(2):216–222. [doi:10.1046/j.1365-2672.2001.01233.x]

    Article  PubMed  CAS  Google Scholar 

  • Khuri, A.I., Cornell, J.A., 1987. Response Surfaces Design and Analysis. Dekker, NY.

    Google Scholar 

  • King, V.A., 1983. Studies on the control of the growth of Saccharomyces cerevisiae by using response surface methodology to achieve effective preservation at high water activities. Int. J. Food Sci. Technol., 28:519–529.

    Google Scholar 

  • Ma, A.Y.M., Ooraikul, B., 1986. Optimization of enzymatic hydrolysis of canola meal with response surface methodology. J. Food Proc. Preserv., 10(2):99–113. [doi:10.1111/j.1745-4549.1986.tb00010.x]

    Article  Google Scholar 

  • Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem., 31(3):426–427. [doi:10.1021/ac60147a030]

    Article  CAS  Google Scholar 

  • Montgomery, D.C., 1997. Response Surface Methods and Other Approaches to Process Optimization. In: Montgomery, D.C. (Ed.), Design and Analysis of Experiments. John Wiley and Sons, NY, p.427–510.

    Google Scholar 

  • Morihara, K., 1967. Elastolytic properties of various proteinase from microbial origin. Arch. Biochem. Biophys., 120(1):68–78. [doi:10.1016/0003-9861(67)90599-1]

    Article  PubMed  CAS  Google Scholar 

  • Ozaki, H., Shiio, I., 1975. Purification and properties of elastolytic enzyme from Flavobacterium immotum. J. Biochem., 77:171–180.

    PubMed  CAS  Google Scholar 

  • Ramirez, J., Gutierrez, H., Gschaedler, A., 2001. Optimization of astaxanthin production by Phaffia rhodozyma through factorial design and response surface methodology. J. Biotechnol., 88(3):259–268. [doi:10.1016/S0168-1656(01)00279-6]

    Article  PubMed  CAS  Google Scholar 

  • Roseiro, J.C., 1992. Medium development for xanthan production. Process Biochem., 27(3):167–175. [doi:10.1016/0032-9592(92)87005-2]

    Article  CAS  Google Scholar 

  • Rosi, I., Costamagna, L., Bertuccioli, M., 1987. Wine Fermentation by Immobilized Yeast: An Optimization Study. In: Flavor Science and Technology. John Wiley and Sons, NY.

    Google Scholar 

  • Sacher, L.A., 1955. Photometry method for estimation of elastase activity. Proc. Soc. Exp. Biol. Med., 90:323–325.

    Google Scholar 

  • Shibata, Y., Fujimura, S., Nakamura, T., 1993. Purification and partial characterization of an elastolytic serine protease of Prevotella intermedia. Appl. Environ. Microbial., 7:2107–2111.

    Google Scholar 

  • Shiio, I., Nakamatsu, T., Ozaki, H., 1974. Microbial production of elastolytic enzymes. Agri. Biol. Chem., 1:1–7.

    Google Scholar 

  • Tsai, Y.C.H., Jung, R.Y., Lin, S.F., 1988. Production and further characterization of an alkaline elastase production by alkalophilic Bacillus strain YaB. Appl. Environ. Microb., 1:3156–3161.

    Google Scholar 

  • Tsuzuki, H., Oka, T., 1965. Pseudomonas aeruginosa elastase: isolation, crystallization and preliminary characterization. J. Biol. Chem., 8:3295–3303.

    Google Scholar 

  • Zins, M.M., Zimprich, C.A., Petermann, S.R., Rust, L., 2001. Expression and partial characterization of an elastase from Chromobacterium violaceum. Vet. Microbiol., 80(1):63–74. [doi:10.1016/S0378-1135(00)00370-9]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Guo-qing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Qh., Ruan, H., Zhang, Hf. et al. Enhanced production of elastase by Bacillus licheniformis ZJUEL31410: optimization of cultivation conditions using response surface methodology. J. Zhejiang Univ. - Sci. B 8, 845–852 (2007). https://doi.org/10.1631/jzus.2007.B0845

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0845

Key words

CLC number

Navigation