Skip to main content

Advertisement

Log in

Evaluation of the effect and profitability of gene-assisted selection in pig breeding system

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Objective: To evaluate the effect and profitability of using the quantitative trait loci (QTL)-linked direct marker (DR marker) in gene-assisted selection (GAS). Methods: Three populations (100, 200, or 300 sows plus 10 boars within each group) with segregating QTL were simulated stochastically. Five economic traits were investigated, including number of born alive (NBA), average daily gain to 100 kg body weight (ADG), feed conversion ratio (FCR), back fat at 100 kg body weight (BF) and intramuscular fat (IMF). Selection was based on the estimated breeding value (EBV) of each trait. The starting frequencies of the QTL’s favorable allele were 0.1, 0.3 and 0.5, respectively. The economic return was calculated by gene flow method. Results: The selection efficiency was higher than 100% when DR markers were used in GAS for 5 traits. The selection efficiency for NBA was the highest, and the lowest was for ADG whose QTL had the lowest variance. The mixed model applied DR markers and obtained higher extra genetic gain and extra economic returns. We also found that the lower the frequency of the favorable allele of the QTL, the higher the extra return obtained. Conclusion: GAS is an effective selection scheme to increase the genetic gain and the economic returns in pig breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blattman, A.N., Kirkpatrick, B.W., Gregory, K.E., 1996. A search for quantitative trait loci for ovulation rate in cattle. Anim. Genet., 27:157–162.

    Article  PubMed  CAS  Google Scholar 

  • Brascamp, E.W., van Arendonk, J.A.M., Groen, A.F., 1993. Economic appraisal of the utilization of genetic markers in dairy cattle breeding. J. Dairy Sci., 76:1204–1213.

    Google Scholar 

  • Cao, H.Z., 2003. The Breeding Plan for High Quality Pigs. Ph.D. Thesis, China Agricultural University (in Chinese).

  • Chakraborty, R.L., Moreau, R.L., Dekkers, J.C.M., 2002. A general method to optimize selection on multiple identified quantitative trait loci. Genet. Sel. Evol., 34(2): 145–170. [doi:10.1051/gse:2002001]

    Article  PubMed  CAS  Google Scholar 

  • Dekkers, J.C.M., 2004. Commercial application of marker-and gene-assisted selection in livestock: strategies and lessons. J. Anim. Sci., 82(Suppl.):313–328.

    Google Scholar 

  • Dekkers, J.C.M., van Arendonk, J.A.M., 1998. Optimizing selection for quantitative traits with information for an identified locus in outbred population. Genet. Res. (Camb), 71(3):257–275. [doi:10.1017/S0016672398003267]

    Article  Google Scholar 

  • Dekkers, J.C.M., Chakraborty, R.L., 2001. Potential gain from optimizing multi-generation selection on an identified quantitative trait locus. J. Anim. Sci., 79:2975–2990.

    PubMed  CAS  Google Scholar 

  • Dragos-Wendrich, M., Moser, G., Bartenschlager, H., Reiner, G., Geldermann, H., 2003. Linkage and QTL mapping for Sus scrofa chromosome 11. Journal of Animal Breeding and Genetics, 120(s1):89–94. [doi:10.1046/j.0931-2668.2003.00428.x]

    Article  CAS  Google Scholar 

  • Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics, 4th Ed. Longman Group Limited Corporation.

  • Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A., Sargeant, L., Sorensen, A., Steele, M., Zhao, X., Womack, J.E., Hoeschele, I., 1995. Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics, 139:907–920.

    PubMed  CAS  Google Scholar 

  • Gimelfarb, A., Lande, R., 1995. Marker-assisted selection and marker-QTL associations in hybrid populations. Theor. Appl. Genet., 91(3):522–528. [doi:10.1007/BF00222983]

    Article  Google Scholar 

  • Gomez-Raya, L., Klemetsdal, G., 1999. Two-stage strategies utilizing marker-quantitative trait locus information and individual performance. J. Anim. Sci., 77(8):2008–2018.

    PubMed  CAS  Google Scholar 

  • Hayes, B., Goddard, M.E., 2003. Evaluation of marker assisted selection in pig enterprises. Livestock Production Science, 81(2–3):197–211. [doi:10.1016/S0301-6226(02)00257-9]

    Article  Google Scholar 

  • Heyen, D.W., Weller, J.I., Ron, M., Band, M., Beever, J.E., Feldmesser, E., Da, Y., Wiggans, G.R., Vanraden, P.M., Lewin, H.A., 1999. A genome scan for QTL influencing milk production and health traits in dairy cattle. Physiol. Genomics, 1:165–175.

    PubMed  CAS  Google Scholar 

  • Hill, J.M., 1974. Prediction and evaluation of response to selection with overlapping generations. Anim. Prod., 18:117–139.

    Article  Google Scholar 

  • Hospital, F., Moreau, L., Lacoudre, F., Charcosset, A., Gallais, A., 1997. More on the efficiency of marker assisted selection. Theor. Appl. Genet., 95(8):1181–1189. [doi:10.1007/s001220050679]

    Article  Google Scholar 

  • Lande, R., Thompson, R., 1990. Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics, 124:743–756.

    PubMed  CAS  Google Scholar 

  • Liu, H.Y., Zhang, Y., Zhang, Q., 2001. Relative efficiency of marker assisted selection when marker and QTL incompletely Linked. Chinese Science Bulletin, 46(240): 2058–2063.

    Google Scholar 

  • Meuwissen, T.H.E., van Arendonk, J.A.M., 1992. Potentional improvement in rate of genetic gain from marker-assisted selection in dairy cattle breeding schemes. J. Dairy Sci., 6(75):1652–1659.

    Google Scholar 

  • Meuwissen, T.H.E., Goddard, M.E., 1996. The use of marker haplotypes in animal breeding schemes. Genet. Sel. Evol., 28(2):161–176. [doi:10.1051/gse:19960203]

    Article  Google Scholar 

  • Ovilo, C.A., Clop, J.L., Noguera, M.A., Oliver, M.A., Barragán, C., Rodriguez, C., Silió, L., Toro, M.A., Coll, A., Folch, J.M., Sánchez, A., Babot, D., Varona, L., Pérez-Enciso, M., 2002. Quantitative trait locus mapping for meat quality traits in an Iberianx Landrace F2 pig population. J. Anim. Sci., 80:2801–2808.

    PubMed  CAS  Google Scholar 

  • Ruane, J., Colleau, J., 1995. Marker assisted selection for genetic improvement of animal population when a single QTL is marked. Genet. Res. Camb., 66:71–83.

    CAS  Google Scholar 

  • Ruane, J., Colleau, J., 1996. Marker-assisted selection for a sex-limited character in a nucleus breeding population. J. Dairy Sci., 79(9):1666–1678.

    PubMed  CAS  Google Scholar 

  • Sato, S., Oyamada, Y., Atsuj, K., Nade, T., Sato, S., Kobayashi, E., Mitsuhashi, T., Nirasawa, K., Komatsuda, A., Saito, Y., Terai, S., Hayashi, T., Sugimoto, Y., 2003. Quantitative trait loci analysis for growth and carcass traits in a Meishan×Duroe F2 resource population. J. Anim. Sci., 81(12):29–38.

    Google Scholar 

  • Schrooten, C., Bovenhuis, H., Coppieters, W., van Arendonk, J.A.M., 2000. Whole genome scan to detect quantitative trait loci for conformation and functional traits in dairy cattle. J. Dairy Sci., 83:795–806.

    Article  PubMed  CAS  Google Scholar 

  • Short, T.H., Rothschild, M.F., Southwood, O.I., Melaren, D.G., de Vries, A., van der Steen, H., Eckardt, G.R., Tuggle, C.K., Helem, J., Vaske, D.A., Mileham, A.J., Plastow, G.S., 1997. Effect of the estrogen receptor locus on reproduction and production traits in four commercial pig lines. J. Anim. Sci., 75:3138–3142.

    PubMed  CAS  Google Scholar 

  • Spelman, R., Garrick, D.J., 1998. Genetic and economic responses for within-family marker-assisted selection in dairy cattle breeding schemes. J. Dairy Sci., 81:2942–2950.

    Article  PubMed  CAS  Google Scholar 

  • Stearns, T.M., Beevers, J.E., Southey, B.R., Ellis, M., McKeith, F.K., Rodriguez-Zas, S.L., 2005. Evaluation of approaches to detect quantitative trait loci for growth, carcass, and meat quality on swine chromosomes 2, 6, 13, and 18. I. Univariate outbred F2 and sib-pair analyses. J. Anim. Sci., 83:1481–1493.

    PubMed  CAS  Google Scholar 

  • Tang, G.Q., 2006. Study on Optimization Using QTL Information in Selection Schemes. Ph.D. Thesis, Sichuan Agricultural University (in Chinese).

  • Villanueva, B., Pong-Wong, B.R., Woolliams, J.A., 2002. Marker assisted selection with optimized contribution of the candidates to selection. Genet. Sel. Evol., 34(6): 679–703. [doi:10.1051/gse:2002031]

    Article  PubMed  CAS  Google Scholar 

  • Villanueva, B., Dekkers, J.C.M., Woolliams, J.A., Settar, P., 2004. Maximizing genetic gain over multiple generations with quantitative trait locus selection and control of inbreeding. J. Anim. Sci., 82:1305–1314.

    PubMed  CAS  Google Scholar 

  • Villanueva, B., Pong-Wong, R., Fernández, J., Toro, M.A., 2005. Benefits from marker-assisted selection under an additive polygenic genetic model. J. Anim. Sci., 83:1747–1752.

    PubMed  CAS  Google Scholar 

  • Whittaker, J.C., Curnow, R.N., Haley, C.S., Thompson, R., 1995. Using marker-maps in marker-assisted selection. Genet. Res. Camb., 66:255.

    CAS  Google Scholar 

  • Zhang, Y., 2000. Livestock Breeding Plan. China Agricultural University Publishing Company, Beijing, China (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Yao-sheng.

Additional information

Project (No. 30300249) supported by the Natural Science Foundation of Guangdong Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Yl., Zhang, Q. & Chen, Ys. Evaluation of the effect and profitability of gene-assisted selection in pig breeding system. J. Zhejiang Univ. - Sci. B 8, 822–830 (2007). https://doi.org/10.1631/jzus.2007.B0822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0822

Key words

CLC number

Navigation