Skip to main content
Log in

Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Detecting plant health conditions plays a key role in farm pest management and crop protection. In this study, measurement of hyperspectral leaf reflectance in rice crop (Oryzasativa L.) was conducted on groups of healthy and infected leaves by the fungus Bipolaris oryzae (Helminthosporium oryzae Breda. de Hann) through the wavelength range from 350 to 2 500 nm. The percentage of leaf surface lesions was estimated and defined as the disease severity. Statistical methods like multiple stepwise regression, principal component analysis and partial least-square regression were utilized to calculate and estimate the disease severity of rice brown spot at the leaf level. Our results revealed that multiple stepwise linear regressions could efficiently estimate disease severity with three wavebands in seven steps. The root mean square errors (RMSEs) for training (n=210) and testing (n=53) dataset were 6.5% and 5.8%, respectively. Principal component analysis showed that the first principal component could explain approximately 80% of the variance of the original hyperspectral reflectance. The regression model with the first two principal components predicted a disease severity with RMSEs of 16.3% and 13.9% for the training and testing dataset, respectively. Partial least-square regression with seven extracted factors could most effectively predict disease severity compared with other statistical methods with RMSEs of 4.1% and 2.0% for the training and testing dataset, respectively. Our research demonstrates that it is feasible to estimate the disease severity of rice brown spot using hyperspectral reflectance data at the leaf level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, M.L., Philpot, W.D., Novell, W.A., 1999. Yellowness index: an application of spectral second derivatives to estimate chlorosis of leaves in stressed vegetation. International Journal of Remote Sensing, 20(18):3663–3675. [doi:10.1080/014311699211264]

    Article  Google Scholar 

  • Brenchley, G.H., 1968. Aerial photography for the study of plant diseases. Annual Review of Phytopathology, 6(1):1–22. [doi:10.1146/annurev.py.06.090168.000245]

    Article  Google Scholar 

  • Card, D.H., Peterson, D.L., Matson, P.A., 1988. Prediction of leaf chemistry by the use of visible and near infrared reflectance spectroscopy. Remote Sensing of Environment, 26(2):123–147. [doi:10.1016/0034-4257(88)90092-2]

    Article  Google Scholar 

  • Carter, G.A., 1994. Ratios of leaf reflectance in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing, 15(3):697–703. [doi:10.1080/01431169408954109]

    Article  Google Scholar 

  • Colwell, R.N., 1956. Determining the prevalence of certain cereal diseases by means of aerial photography. Hilgardia, 26:223–286.

    Google Scholar 

  • Curran, P.J., 1989. Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3):271–278. [doi:10.1016/0034-4257(89)90069-2]

    Article  Google Scholar 

  • Everitt, J.H., Escobar, D.E., Summary, K.R., Davis, M.R., 1994. Using airborne video, global positioning system, and geographical information system technologies for detecting and mapping citrus blackfly infestations. Southwestern Entomologist, 19(2):129–138.

    Google Scholar 

  • Fung, T., LeDrew, E., 1987. Application of principal components analysis to change detection. Photogrammetric Engineering and Remote Sensing, 53(12):1649–1658.

    Google Scholar 

  • Hansen, P.M., Jørgensen, J.R., Thomsen, A., 2002. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. Journal of Agricultural Science, 139(3):307–318. [doi:10.1017/S0021859602002320]

    Article  Google Scholar 

  • Holden, H., LeDrew, E., 1998. Spectral discrimination of healthy and non-healthy corals base on cluster analysis, principal components analysis and derivative spectroscopy. Remote Sensing of Environment, 65(2):217–224. [doi:10.1016/S0034-4257(98)00029-7]

    Article  Google Scholar 

  • Huang, J.F., Apan, A., 2006. Detection of sclerotinia rot disease on celery using hyperspectral data and partial least squares regression. Journal of Spatial Science, 52(2):129–142.

    Google Scholar 

  • Jackson, R.D., 1986. Remote sensing of biotic and abiotic plant stress. Annual Review of Phytopathology, 24(1):265–287. [doi:10.1146/annurev.py.24.090186.001405]

    Article  Google Scholar 

  • Jackson, H.R., Wallen, V.R., 1975. Microdensitometer measurements of sequential aerial photographs of field beans infected with bacterial blight. Phytopathology, 65(9):961–968.

    Article  Google Scholar 

  • Kimes, D.S., Nelson, R.F., Manry, M.T., Fung, A.K., 1998. Attributes of neural networks for extracting continuous vegetation parameters from optical and radar measurements. International Journal of Remote Sensing, 19(14):2639–2663. [doi:10.1080/014311698214433]

    Article  Google Scholar 

  • Kobayashi, T., Kanda, E., Kitada, K., Ishiguro, K., Torigoe, Y., 2001. Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology, 91(3):316–323. [doi:10.1094/PHYTO.2001.91.3.316]

    Article  CAS  PubMed  Google Scholar 

  • Mirik, M., Michels, G.J.Jr, Kassymzhanova-Mirik, S., Elliott, N.C., Catana, V., Jones, D.B., Bowling, R., 2006. Using digital image analysis and spectral reflectance data to quantify damage by greenbug (Hemitera: Aphididae) in winter wheat. Computers and Electronics in Agriculture, 51(1–2):86–98. [doi:10.1016/j.compag.2005.11.004]

    Article  Google Scholar 

  • Mirik, M., Michels, G.J.Jr, Kassymzhanova-Mirik, S., Elliott, N.C., 2007. Reflectance characteristics of Russian wheat aphid (Hemiptera: Aphididae) stress and abundance in winter wheat. Computers and Electronics in Agriculture, 57(2):123–134. [doi:10.1016/j.compag.2007.03.002]

    Article  Google Scholar 

  • Monteiro, S.T., Minekawa, Y., Kosugi, Y., Akazaw, T., Oda, K., 2007. Prediction of sweetness and amino acid content in soybean crops from hyperspectral imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 62(1):2–12. [doi:10.1016/j.isprsjprs.2006.12.002]

    Article  Google Scholar 

  • Muhammed, H.H., Larsolle, A., 2003. Feature vector based analysis of hyperspectral crop reflectance data for discrimination and quantification of fungal disease severity in wheat. Biosystems Engineering, 86(2):125–134. [doi:10.1016/S1537-5110(03)00090-4]

    Article  Google Scholar 

  • Neblette, C.B., 1927. Aerial photography for the study of plant diseases. Photo-Era Magazine, 58:346.

    Google Scholar 

  • Nilsson, H.E., 1995. Remote sensing and image analysis in plant pathology. Annual Review of Phytopathology, 33(1):489–527. [doi:10.1146/annurev.py.33.090195.002421]

    Article  CAS  PubMed  Google Scholar 

  • Picco, A.M., Rodolfi, M., 2002. Pyricularia grisea and Bipolaris oryzae: a preliminary study on the occurrence of airborne spores in a rice field. Aerobiologia, 18(2):163–167. [doi:10.1023/A:1020654319130]

    Article  Google Scholar 

  • Price, J.C., 1994. How unique is spectral signatures? Remote Sensing of Environment, 49(3):181–186. [doi:10.1016/0034-4257(94)90013-2]

    Article  Google Scholar 

  • Singh, D., Sao, R., Singh, K.P., 2007. A remote sensing assessment of pest infestation on sorghum. Advances in Space Research, 39(1):155–163. [doi:10.1016/j.asr.2006.02.025]

    Article  Google Scholar 

  • Thenkabail, P.S., Smith, R.B., Pauw, E.D., 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71(2):158–182. [doi:10.1016/S0034-4257(99)00067-X]

    Article  Google Scholar 

  • Vogelmann, J.E., Rock, B.N., Moss, D.M., 1993. Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing, 14(8):1563–1575. [doi:10.1080/01431169308953986]

    Article  Google Scholar 

  • Wang, H.W., 1999. Partial Least-Squares Regression—Method and Applications. National Defense Industrial Press, Beijing, p. 150–170 (in Chinese).

    Google Scholar 

  • Warner, T.A., Shank, M., 1997. An evaluation of the potential for fuzzy classification of multispectral data using artificial neural networks. ISPRS Journal of Photogrammetric Engineering and Remote Sensing, 63(11):1285–1294.

    Google Scholar 

  • West, J.S., Bravo, C., Oberit, R., Lemaire, D., Moshou, D., McCartney, H.A., 2003. The potential of optical canopy measurement for targeted control of field crop diseases. Annual Review of Phytopathology, 41(1):593–614. [doi:10.1146/annurev.phyto.41.121702.103726]

    Article  PubMed  CAS  Google Scholar 

  • Williams, P.C., Norris, K.H., Gehrke, C.W., Bernstein, K., 1983. Comparison of near-infrared methods for measuring protein and moisture in wheat. Cereal Foods World, 28(2):149–152.

    Google Scholar 

  • Yoder, B.J., Pettigrew-Crosby, R.E., 1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400∼2500 nm) at leaf and canopy scales. Remote Sensing of Environment, 53(3):199–211. [doi:10.1016/0034-4257(95)00135-N]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Jing-feng.

Additional information

Project supported by the Hi-Tech Research and Development Program (863) of China (No. 2006AA10Z203), and the National Science and Technology Task Force Project (No. 2006BAD10A01), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Zy., Huang, Jf., Shi, Jj. et al. Characterizing and estimating rice brown spot disease severity using stepwise regression, principal component regression and partial least-square regression. J. Zhejiang Univ. - Sci. B 8, 738–744 (2007). https://doi.org/10.1631/jzus.2007.B0738

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0738

Key words

CLC number

Navigation