Skip to main content
Log in

Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

This study is aimed at investigating the potentials of ex vivo expansion and pluri-differentiation of cryopreservation of adult human bone marrow mesenchymal stem cells (hMSCs) into chondrocytes, adipocytes and neurocytes. Cryopreserved hMSCs were resuscitated and cultured for 15 passages, and then induced into chondrocytes, adipocytes and neurocytes with corresponding induction medium. The induced cells were observed for morphological properties and detected for expressions of type II collagen, triglyceride or neuron-specific enolase and nestin. The result showed that the resuscitated cells could differentiate into chondrocytes after exposure to transforming growth factor β1 (TGF-β1), insulin-like growth factor I (IGF-I) and vitamin C (VC), and uniformly changed morphologically from a spindle-like fibroblastic appearance to a polygonal shape in three weeks. The induced cells were heterochromatic to safranin O and expressed cartilage matrix-procollagenal (II) mRNA. The resuscitated cells cultured in induction medium consisting of dexamethasone, 3-isobutyl-1-methylxanthine, indomethacin and IGF-I showed adipogenesis, and lipid vacuoles accumulation was detectable after 21 d. The resuscitated hMSCs were also induced into neurocytes and expressed nestin and neuron specific endolase (NSE) that were special surface markers associated with neural cells at different stage. This study suggested that the resuscitated hMSCs should be still a population of pluripotential cells and that it could be used for establishing an abundant hMSC reservoir for further experiment and treatment of various clinical diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai, X., Xiao, Z., Pan, Y., Hu, J., Pohl, J., Wen, J., Li, L., 2004. Cartilage-derived morphogenetic protein-1 promotes the differentiation of mesenchymal stem cells into chondrocytes. Biochem. Biophys. Res. Commun., 325(2):453–460. [doi:10.1016/j.bbrc.2004.10.055]

    Article  PubMed  CAS  Google Scholar 

  • Bainter, J.J., Boos, A., Kroll, K.L., 2001. Neural induction takes a transcriptional twist. Dev. Dyn., 222(3):15–327. [doi:10.1002/dvdy.1210]

    Article  Google Scholar 

  • Blondheim, N.R., Levy, Y.S., Zur, T.B., Burshtein, A., Cherlow, T., Kan, I., Barzilai, R., Bahat-Stromza, M., Barhum, Y., Bulvik, S., et al., 2006. Human mesenchymal stem cells express neural genes, suggesting a neural predisposition. Stem Cells Dev., 15(2):141–164. [doi:10.1089/scd.2006.15.141]

    Article  PubMed  CAS  Google Scholar 

  • Bruder, S.P., Jaiswal, N., Haynesworth, S.E., 1997. Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J. Cell. Biochem., 64(2):278–294. [doi:10.1002/(SICI)1097-4644(199702)64:2〈278::AID-JCB11〉3.0.CO:2-F]

    Article  PubMed  CAS  Google Scholar 

  • Chen, F., Mao, T., Ding, G., 2003. Experimental study on the chondrogenesis potentiality of marrow stromal cell under the induction of transforming growth factor-β. West China J. Stomoatol., 21(2):92–94 (in Chinese).

    Google Scholar 

  • Cho, K.J., Trzaska, K.A., Greco, S.J., McArdle, J., Wang, F.S., Ye, J.H., Rameshwar, P., 2005. Neurons derived from human mesenchymal stem cells show synaptic transmission and can be induced to produce the neurotransmitter substance P by interleukin-1α. Stem Cells, 23(3):383–391. [doi:10.1634/stemcells.2004-0251]

    Article  PubMed  CAS  Google Scholar 

  • Chu, Q., Wang, Y., Fu, X., Zhang, S., 2004. Mechanism of in vitro differentiation of bone marrow stromal cells into neuron-like cells. J. Huazhong Univ. Sci. Technol. Med. Sci., 24(3):259–261.

    PubMed  CAS  Google Scholar 

  • Collas, P., Hakelien, A.M., 2003. Teaching cells new tricks. Trends Biotechnol., 21(8):354–361. [doi:10.1016/S0167-7799(03)00147-1]

    Article  PubMed  CAS  Google Scholar 

  • Dezawa M., Kanno, H., Hoshino, M., Cho, H., Matsumoto, N., Itokazu, Y., Tajima, N., Yamada, H., Sawada, H., Ishikawa, H., et al., 2004. Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest., 113(12):1701–1710. [doi:10.1172/JCI200420935]

    Article  PubMed  CAS  Google Scholar 

  • Digirolamo, C.M., Stokes, D., Colter, D., Phinney, D.G., Class, R., Prockop, D.J., 1999. Propagation and senescence of human marrow stromal cells in culture: a simple colony-forming assay identifies samples with the greatest potential to propagate and differentiate. Br. J. Haematol., 107(2):275–281. [doi:10.1046/j.1365-2141.1999.01715.x]

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z.K., Liu, X.D., Hou, C.M., Li, X.S., Mao, N., 2001. Human bone marrow mesenchymal stem cells differentiate into neuron-like cells in vitro. J. Exp. Hematol. Sinica, 9(1):91–92 (in Chinese).

    Google Scholar 

  • Hayflick, L., 1989. Antecedents of aging research. Exp. Gerontol., 24(5–6):355–365. [doi:10.1016/0531-5565(89)90043-0]

    Article  PubMed  CAS  Google Scholar 

  • Indrawattana, N., Chen, G., Tadokoro, M., Shann, L.H., Ohgushi, H., Tateishi, T., Tanaka, J., Bunyaratvej, A., 2004. Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem. Biophys. Res. Commun., 320(3):914–919. [doi:10.1016/j.bbrc.2004.06.029]

    Article  PubMed  CAS  Google Scholar 

  • Jiang, Y., Jahagirdar, B.N., Reinhardt, R.L., Schwartz, R.E., Keene, C.D., Ortiz-Gonzalez, X.R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al., 2002. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893):41–49. [doi:10.1038/nature00870]

    Article  PubMed  CAS  Google Scholar 

  • Johnstone, B., Hering, T.M., Caplan, A.I., Goldberg, V.M., Yoo, J.U., 1998. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res., 238(1):265–272. [doi:10.1006/excr.1997.3858]

    Article  PubMed  CAS  Google Scholar 

  • Jori, F.P., Napolitano, M.A., Melone, M.A., Cipollaro, M., Cascino, A., Altucci, L., Peluso, G., Giordano, A., Galderisi, U., 2005. Molecular pathways involved in neural in vitro differentiation of marrow stromal stem cells. J. Cell. Biochem., 94(4):645–655. [doi:10.1002/jcb.20315]

    Article  PubMed  CAS  Google Scholar 

  • Kleber, M., Lee, H.Y., Wurdak, H., Buchstaller, J., Riccomagno, M.M., Ittner, L.M., Suter, U., Epstein, D.J., Sommer, L., 2005. Neural crest stem cell maintenance by combinatorial Wnt and BMP signaling. J. Cell Biol., 169(2):309–320. [doi:10.1083/jcb.200411095]

    Article  PubMed  CAS  Google Scholar 

  • Korbling, M., Estrov, Z., 2003. Adult stem cells for tissue repair—a new therapeutic concept? N. Engl. J. Med., 349(6):570–582. [doi:10.1056/NEJMra022361]

    Article  PubMed  Google Scholar 

  • Kotobuki, N., Hirose, M., Takakura, Y., Ohgushi, H., 2004. Cultured autologous human cells for hard tissue regeneration: preparation and characterization of mesenchymal stem cells from bone marrow. Artif. Organs, 28(1):33–39. [doi:10.1111/j.1525-1594.2004.07320.x]

    Article  PubMed  Google Scholar 

  • Kotobuki, N., Hirose, M., Machida, H., Katou, Y., Muraki, K., Takakura, Y., Ohgushi, H., 2005. Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells. Tissue Eng., 11(5–6):663–673. [doi:10.1089/ten.2005.11.663]

    Article  PubMed  CAS  Google Scholar 

  • Lee, J.W., Kim, Y.H., Kim, S.H., Han, S.H., Hahn, S.B., 2004. Chondrogenic differentiation of mesenchymal stem cells and its clinical applications. Yonsei Med. J., 45(Suppl.):41–47.

    PubMed  Google Scholar 

  • Lisignoli, G., Cristino, S., Piacentini, A., Toneguzzi, S., Grassi, F., Cavallo, C., Zini, N., Solimando, L., Maraldi, N.M., Facchini, A., 2005. Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan based scaffold. Biomaterials, 26(28):5677–5686. [doi:10.1016/j.biomaterials.2005.02.031]

    Article  PubMed  CAS  Google Scholar 

  • Lu, P., Blesch, A., Tuszynski, M.H., 2004. Induction of bone marrow stromal cells to neurons: differentiation, trans-differentiation, or artifact? J. Neurosci. Res., 77(2):174–191. [doi:10.1002/jnr.20148]

    Article  PubMed  CAS  Google Scholar 

  • Mackay, A.M., Beck, S.C., Murphy, J.M., Barry, F.P., Chichester, C.O., Pittenger, M.F., 1998. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng., 4(4):415–428.

    Article  PubMed  CAS  Google Scholar 

  • Meisler, M.H., Howard, G., 1989. Effects of insulin on gene transcription. Ann. Rev. Physiol., 51(1):701–714. [doi:10.1146/annurev.ph.51.030189.003413]

    Article  CAS  Google Scholar 

  • Munoz-Elias, G., Woodbury, D., Black, I.B., 2003. Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells, 21(4):437–448. [doi:10.1634/stemcells.21-4-437]

    Article  PubMed  Google Scholar 

  • Neuhuber, B., Gallo, G., Howard, L., Kostura, L., Mackay, A., Fisher, I., 2004. Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res., 77(2):192–204. [doi:10.1002/jnr.20147]

    Article  PubMed  CAS  Google Scholar 

  • Otero, J.J., Fu, W., Kan, L., Cuadra, A.E., Kessler, J.A., 2004. β-catenin signaling is required for neural differentiation of embryonic stem cells. Development, 131(15):3545–3557. [doi:10.1242/dev.01218]

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411):143–147. [doi:10.1126/science.284.5411.143]

    Article  PubMed  CAS  Google Scholar 

  • Poh, M., Boyer, M., Solan, A., Dahl, S.L.M., Pedrotty, D., Banik, S.S.R., McKee, J.A., Klinger, R.Y., Counter, C.M., Niklason, L.E., 2005. Blood vessels engineered from human cells. Lancet, 365(9477):2122–2124. [doi:10.1016/S0140-6736(05)66735-9]

    Article  PubMed  Google Scholar 

  • Qiu, L.Y., Wang, J.F., Shen, D., Jin, J., 2004. Expansion and chondrogenic induction of human bone marrow mesenchymal stem cells. J. Zhejiang Univ. (Sci. Ed.), 31(2):337–342 (in Chinese).

    Google Scholar 

  • Ren, T., Cao, Y., Zhao, Q., Zhou, C., Liao, L., Jia, M., Zhao, Q., Cai, H., Han, Z.C., Yang, R., et al., 2006. Proliferation and differentiation of bone marrow stromal cells under hypoxic conditions. Biochem. Biophys. Res. Commun., 347(1):12–21. [doi:10.1016/j.bbrc.2006.05.169]

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T.B., Saporta, S., Janssen, W., Patel, N., et al., 2000. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp. Neurol., 164(2):247–256. [doi:10.1006/exnr.2000.7389]

    Article  PubMed  CAS  Google Scholar 

  • Shi, S., Gronthos, S., Chen, S., Reddi, A., Counter, C.M., Robey, P.G., Wang, C.Y., 2002. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat. Biotechnol., 20(6):587–591. [doi:10.1038/nbt0602-587]

    Article  PubMed  CAS  Google Scholar 

  • Simonsen, J.L., Rosada, C., Serakinci, N., Justesen, J., Stenderup, K., Rattan, S.I., Jensen, T.G., Kassem, M., 2002. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol., 20(6):592–596. [doi:10.1038/nbt0602-592]

    Article  PubMed  CAS  Google Scholar 

  • Suon, S., Jin, H., Donaldson, A.E., Caterson, E.J., Tuan, R.S., Deschennes, G., Marshall, C., Iacovitti, L., 2004. Transient differentiation of adult human bone marrow cells into neuron-like cells in culture: development of morphological and biochemical traits is mediated by different molecular mechanisms. Stem Cells Dev., 13(6):625–635. [doi:10.1089/scd.2004.13.625]

    Article  PubMed  CAS  Google Scholar 

  • Tondreau, T., Meuleman, N., Delforge, A., Dejeneffe, M., Leroy, R., Massy, M., Mortier, C., Bron, D., Lagneaux, L., 2005. Mesenchymal stem cells derived from CD133-positive cells in mobilized peripheral blood and cord blood: proliferation, Oct4 expression, and plasticity. Stem Cells, 23(8):1105–1112. [doi:10.1634/stemcells.2004-0330]

    Article  PubMed  CAS  Google Scholar 

  • Wang, J., Luo, C.J., Guo, C.H., Zhang, Y., 2002. Mesenchymal stem cells and related factors. J. Exp. Hematol. Sinica, 10(5):468–471 (in Chinese).

    Google Scholar 

  • Watanabe, H., de Caestecker, M.P., Yamada, Y., 2001. Transcriptional cross-talk between Smad, ERK1/2, and p38 mitogen-activated protein kinase pathways regulates transforming growth factor-β-induced aggrecan gene expression in chondrogenic ATDC5 cells. J. Biol. Chem., 276(17):14466–14473.

    PubMed  CAS  Google Scholar 

  • Woodbury, D., Schwarz, E.J., Prockop, D.J., Black, I.B., 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res., 61(4):364–370. [doi:10.1002/1097-4547(20000815)61:4〈364::AID-JNR2〉3.0.C9:2-C]

    Article  PubMed  CAS  Google Scholar 

  • Worster, A.A., Brower-Toland, B.D., Fortier, L.A., Bent, S.J., Williams, J., Nixon, A.J., 2001. Chondrocytic differentiation of mesenchymal stem cells sequentially exposed to transforming growth factor-β1 in monolayer and insulin-like growth factor-I in a three-dimensional matrix. J. Orthop. Res., 19(4):738–749. [doi:10.1016/S0736-0266(00)00054-1]

    Article  PubMed  CAS  Google Scholar 

  • Xiang, P., Xia, W.J., Zhang, L.R., Chen, Z.G., Zhang, X.M., Li, Y., Li, S.N., 2001a. Human mesenchymal stem cells differentiate into neuron-like cells. Chin. J. Pathophysiol., 17(4):385–387 (in Chinese).

    Google Scholar 

  • Xiang, P., Zhang, L.R., Chen, Z.G., Xia, W.J., Zhang, X.M., Li, Y., Li, S.N., 2001b. Adult human mesenchymal stem cells differentiate into adipocytes. Chin. J. Pathophysiol., 17(6):598–601 (in Chinese).

    CAS  Google Scholar 

  • Yamaguchi, M., Hirayama, F., Kanai, M., Sato, N., Fukazawa, K., Yamashita, K., Sawada, K., Koike, T., Kuwabara, M., Ikeda, H., Ikebuchi, K., 2001. Serum-free coculture system for ex vivo expansion of human cord blood promitive progenitors and SCID mouse-reconstituting cells using human bone marrow primary stromal cells. Exp. Hematol., 29(2):174–182. [doi:10.1016/S0301-472X(00)00653-6]

    Article  PubMed  CAS  Google Scholar 

  • Yin, Z.H., Liu, M., Wang, J.T., Cao, J.L., Zheng, J., 2002. Inducing rabbit bone marrow mesenchymal stem cells (MSCs) to express chondrogenic protential in vitro. Orthop. J. China, 9(6):586–589 (in Chinese).

    Google Scholar 

  • Zhang, Y., Wang, C., Liao, W., Li, Z., Guo, X., Zhao, Q., Duan, C., Xia, R., 2004a. In vitro chondrogenic phenotype differentiation of bone marrow-derived mesenchymal stem cells. J. Huazhong Univ. Sci. Technol. Med. Sci., 24(3):275–278 (in Chinese).

    PubMed  CAS  Google Scholar 

  • Zhang, H., Wang, J.Z., Sun, H.Y., Zhang, J.N., Yang, S.Y., 2004b. The effects of GM1 and bFGF synergistically inducing adult rat bone marrow stromal cells to form neural progenitor cells and their differentiation. Chin. J. Traumatol., 7(1):3–6 (in Chinese).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wang Jin-fu or Pan Zhi-jun.

Additional information

Project supported by the Science Foundation (No. 2003C23015) and the Natural Science Foundation (No Y204139) of Zhejiang Province, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Y., Zheng, Q., Jia, Bb. et al. Ex vivo expansion and pluripotential differentiation of cryopreserved human bone marrow mesenchymal stem cells. J. Zhejiang Univ. - Sci. B 8, 136–146 (2007). https://doi.org/10.1631/jzus.2007.B0136

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.B0136

Key words

CLC number

Navigation