Skip to main content
Log in

Research on new software compensation method of static and quasi-static errors for precision motion controller

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

To reduce mechanical vibrations induced by big errors compensation, a new software compensation method based on an improved digital differential analyzer (DDA) interpolator for static and quasi-static errors of machine tools is proposed. Based on principle of traditional DDA interpolator, a DDA interpolator is divided into command generator and command analyzer. There are three types of errors, considering the difference of positions between compensation points and interpolation segments. According to the classification, errors are distributed evenly in data processing and compensated to certain interpolation segments in machining. On-line implementation results show that the proposed approach greatly improves positioning accuracy of computer numerical control (CNC) machine tools.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chang, Y.F., 2003. Buffered DDA command generation in a CNC. Control Eng. Practice, 11:797–804. [doi:10.1016/S0967-0661(02)00187-9]

    Article  Google Scholar 

  • Duffie, N.A., Malmberg, S.J., 1987. Error diagnosis and compensation using kinematic models and position error data. Ann. CIRP, 36:355–358.

    Article  Google Scholar 

  • Jeon, J.W., 1994. Method for Controlling the Traveling Path of a Robot During Acceleration and Deceleration. United States Patent, No. 5373439.

  • Jeon, J.W., 2000a. A generalized approach for the acceleration and deceleration of industrial robots and CNC machine tools. Ind. Electr., 47:133–139.

    Article  Google Scholar 

  • Jeon, J.W., 2000b. Efficient acceleration and deceleration technique for short distance movement in industry robots and CNC machine tools. Electr. Lett., 36:766–768. [doi:10.1049/el:20000559]

    Article  Google Scholar 

  • Kim, D.I., Jeon, J.W., 1994. Software acceleration/deceleration methods for industrial robots and CNC machine tools. Mechatronics, 4:37–53. [doi:10.1016/0957-4158(94)90049-3]

    Article  Google Scholar 

  • Kim, D.I., Song, J.I., 1994. Dependence of Machining Accuracy on Acceleration/Deceleration and Interpolation Methods in CNC Machine Tools. IEEE-ISA Annual Meeting. Denver, USA, p.1898–1905.

  • Kwon, Y.S., Hwang, H.Y., Lee, H.R., Kim, S.H., 2004. Rate Loop Control Based on Torque Compensation in Anti-Backlash Geared Servo System. Proc. American Control Conf. Boston, Massachusetts, p.3327–3332.

  • Ren, K., Fu, J.Z., Chen, Z.C., 2006. New look-ahead algorithm for velocity control in high speed machining. J. Zhejiang Univ. (Eng. Ed.), 40:1985–1988 (in Chinese).

    Google Scholar 

  • Ren, K., Fu, J.Z., Chen, Z.C., 2007. Motion velocity smooth link in high speed machining. Chin. J. Mech. Eng., 20:17–20.

    Article  Google Scholar 

  • Sartori, S., Zhang, G.X., 1995. Geometric error measurement and compensation of machines. Ann. CIRP, 44:599–609.

    Article  Google Scholar 

  • Selmic, R.R., Lewis, F.L., 2001. Neutral net backlash compensation with Hebbian tuning using dynamic inversion. Automatica, 37:1269–1277. [doi:10.1016/S0005-1098(01)00066-8]

    Article  MathSciNet  MATH  Google Scholar 

  • Tan, K.K., Huang, S.N., Seet, H.L., 2000. Geometric error compensation of precision motion system using radial basis function. IEEE Trans. on Instrum. Meas., 49:984–991. [doi:10.1109/19.872918]

    Article  Google Scholar 

  • Tan, K.K., Lim, S.Y., Huang, S.N., 2003. Two-degree-freedom Controller Incorporating RBF Adaption for Precision Motion Control Applications. Proc. Int. Conf. on Advanced Intelligent Mechatronics. Atlanta, USA, p.848–853.

  • Tao, G., Kokotovic, P.V., 1993. Adaptive control of system with backlash. Automatica, 29:323–335. [doi:10.1016/0005-1098(93)90126-E]

    Article  MathSciNet  MATH  Google Scholar 

  • You, H.Y., Ye, P.Q., Wang, J.S., Yang, K.M., 2003. Rollover hi-directional pitch error compensation. J. Tsinghua Univ. (Sci. & Tech.), 43:1456–1459 (in Chinese).

    Google Scholar 

  • Zhang, G.X., Veale, R., Charlton, T., Hocken, R., 1985. Error compensation of coordinate measuring machines. Ann. CIRP, 34:445–448.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Jian-zhong.

Additional information

Project supported by the Special Project for Key Mechatronic Equipment of Zhejiang Province (No. 2006C11067) and the Science & Technology Project of Zhejiang Province (No. 2005E10049), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, K., Fu, Jz. & Chen, Zc. Research on new software compensation method of static and quasi-static errors for precision motion controller. J. Zhejiang Univ. - Sci. A 8, 1938–1943 (2007). https://doi.org/10.1631/jzus.2007.A1938

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A1938

Key words

CLC number

Navigation