Skip to main content
Log in

Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The optimal operation conditions in an anoxic sulfide oxidizing (ASO) bioreactor were investigated. The maximal removal rates for sulfide and nitrate were found to be 4.18 kg/(m3·d) and 1.73 kg/(m3·d), respectively. The volumetrical volumetri loading rates (LRs) observed through decreasing hydraulic retention time (HRT) at fixed substrate concentration are higher than those by increasing substrate concentration at fixed HRT. The sulfide oxidation in ASO reactor was partially producing both sulfate and sulfur; but the amount of sulfate produced was approximately one third that of sulfur. The process was able to tolerate high sulfide concentration, as the sulfide removal percentage always remained near 99% when influent concentration was up to 580 mg/L. It tolerated relatively lower nitrate concentration because the removal percentage dropped to 85% when influent concentration was increased above 110 mg/L. The process can tolerate shorter HRT but careful operation is needed. Nitrate conversion was more sensitive to HRT than sulfide conversion since the process performance deteriorated abruptly when HRT was decreased from 3.12 h to 2.88 h. In order to avoid nitrite accumulation in the reactor, the influent sulfide and nitrate concentrations should be kept at 280 mg/L and 67.5 mg/L respectively. Present biotechnology is useful for removing sulfides from sewers and crude oil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • APHA (American Public Health Association, Inc.), 1998. Standard Methods for the Examination of Water and Wastewater (20th Ed.). New York, USA.

  • Basu, R., Clausen, E.C., Gaddy, J.L., 1996. Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog., 15(4):234–238. [doi:10.1002/ep.670150412]

    Article  Google Scholar 

  • Bhambhani, Y., Singh, M., 1991. Physiological effects of hydrogen sulfide inhalation during exercise in healthy men. Appl. Physiol., 71:1872–1877.

    Google Scholar 

  • Buisman, C.J.N., Lettinga, G., 1990. Sulfide from anaerobic waste treatment effluent of a paper mill. Wat. Res., 24(3):313–319. [doi:10.1016/0043-1354(90)90006-R]

    Article  Google Scholar 

  • Buisman, C.J.N., Bert, G., Ijspeert, P., 1990. Optimization of sulfur production in biotechnological sulfide-removing reactor. Biotechnol. Bioeng., 35(1):50–56. [doi:10.1002/bit.260350108]

    Article  Google Scholar 

  • Buisman, C.J.N., Ijspeert, P., Lettinga, G., 1991. Kinetic parameters of a mixed culture oxidizing sulfide and sulfur with oxygen. Biotechnol. Bioeng., 38(8):813–821. [doi:10.1002/bit.260380803]

    Article  Google Scholar 

  • Buisman, C.J.N., Boer, J.D., Boonstra, J., 1993a. A New Biotechnological Method for H2S Removal from Biogas. TAAPI Proceedings, p.773.

  • Buisman, C.J.N., Bloembergen, J.R., Paalvast, C., 1993b. Biological Sulfur Recovery from Paper Mill Effluent. TAAPI Proceedings, p.841.

  • Chen, F.G., Li, W.G., Pan, G.M., Liu, J.X., Jin, C.J., 1995. The study of nitrogen removal with anoxic-aerobic biomembrane process. China Environ. Sci., 15(2): 135–138.

    Google Scholar 

  • Chung, Y.C., Huang, C., Tseng, C.P., 1996. Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. J. Biotechnol., 52(1):31–38. [doi:10.1016/S0168-1656(96)01622-7]

    Article  Google Scholar 

  • Claus, G., Kutzner, H.J., 1985. Autotrophic denitrification by Thiobacillus denitrificans in a packed bed reactor. Appl. Microbiol. Biotechnol., 22(4):289–296. [doi:10.1007/BF00252032]

    Google Scholar 

  • Gadekar, S., Nemati, M., Hill, G.A., 2006. Batch and continuous biooxidation of sulfide by Thiomicrospira sp. CVO: Reaction kinetics and stoichiometry. Wat. Res., 40(12):2436–2446. [doi:10.1016/j.watres.2006.04.007]

    Article  Google Scholar 

  • Gayle, B.P., Boardman, G.D., Sherreard, J.H., Benoit, R.E., 1989. Biological denitrification of water. J. Environ. Eng., 115(5):930–943.

    Article  Google Scholar 

  • Janssen, A.J.H., Ma, S.C., Lens, P., 1997. Performance of a sulfide oxidizing expended bed reactor supplied with dissolved oxygen. Biotechnol. Bioeng., 53(1):32–40. [doi:10.1002/(SICI)1097-0290(19970105)53:1〈32::AID-BI T6〉3.0.CO;2-#]

    Article  Google Scholar 

  • Jappinen, P., Vilkka, V., Marttila, O., 1990. Exposure to hydrogen sulfide and respiratory function. Br. Ind. Med., 47:824–828.

    Google Scholar 

  • Kapoor, A., Viraraghavan, T., 1997. Nitrate removal from drinking water-Review. J. Environ. Eng., 123(4):371–380. [doi:10.1061/(ASCE)0733-9372(1997)123:4(371)]

    Article  Google Scholar 

  • Khanna, P., Rajkumar, B., Jyothikumar, N., 1996. Microbial recovery of sulfur from thiosulfate bearing wastewater with phototrophic and sulfate reducing bacteria. Current Microbiol., 32(1):33–37. [doi:10.1007/s002849900006]

    Article  Google Scholar 

  • Kilburn, K.H., Warshaw, R.H., 1995. Hydrogen sulfide and reduced-sulfur gases adversely affect neurophysiological functions. Toxicol. Ind. Health, 11:185–197.

    Article  Google Scholar 

  • Kleerebezem, R., Mendez, R., 2002. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Wat. Sci. Tech., 45(10):349–356.

    Google Scholar 

  • Kobayashi, A.H., Stenstrom, M., Mah, R.A., 1983. Use of photosynthetic bacteria for hydrogen sulfide removal from anaerobic waste treatment effluent. Wat. Res., 17(5):579–587. [doi:10.1016/0043-1354(83)90117-3]

    Article  Google Scholar 

  • Koenig, A., Liu, L.H., 1996. Autotrophic denitrification of landfill leachate using elemental sulphur. Wat. Sci. Tech., 34(5–6):469–476. [doi:10.1016/0273-1223(96)00680-4]

    Google Scholar 

  • Koenig, A., Liu, L.H., 1997. The study of landfill leachate treatment by Thiobacillus denitrificans. J. Environ. Sci., 18:51–54.

    Google Scholar 

  • Krishnakumar, B., Manilal, V.B., 1999. Bacterial oxidation of sulphide under denitrifying conditions. Biotechnology Letters, 21(5):437–440. [doi:10.1023/A:1005584920800]

    Article  Google Scholar 

  • Lee, M.C., Sublette, K.L., 1993. Microbial treatment of sulfide-laden water. Wat. Res., 27(5):839–846. [doi:10.1016/ 0043-1354(93)90148-B]

    Article  Google Scholar 

  • Mahmood, Q., Zheng, P., Cai, J., Wu, D.L., Hu, B.L., Li, J.Y., 2007. Anoxic sulfide biooxidation using nitrite as electron acceptor. J. Hazard. Mater. (in Press). [doi:10.1016/j.jhazmat.2007.01.002]

  • Reyes-Avila, J., Razo-Floresa, E., Gomez, J., 2004. Simultaneous biological removal of nitrogen, carbon and sulfur by denitrification. Wat. Res., 38(14–15):3313–3321. [doi:10.1016/j.watres.2004.04.035]

    Article  Google Scholar 

  • Rittmann, B.E., McCarty, P.L., 2002. Environmental Biotechnology: Principles and Applications. McGraw-Hill Companies, Inc., p.502.

  • Shuler, M.L., Kargi, F., 2002. Bioprocess Engineering, Basic Concepts (Second Ed.). Prentice-Hall Inc., Englewood Cliffs, NJ, p.158–160.

    Google Scholar 

  • Stefess, G.C., Yebeb, J.G., 1989. Factors influencing elemental sulfur production from sulfide or thiosulfate by autotrophic Thiobacilli. Forum Microbiology, 12:92–101.

    Google Scholar 

  • Sublette, K.L., Heskth, R.P., 1994. Microbial oxidation of hydrogen sulfide in a pilot-scale bubble column. Biotechnology Progress, 10(6):611–614. [doi:10.1021/ bp00030a005]

    Article  Google Scholar 

  • Vaiopoulou, E., Melidis, P., Aivasidis, A., 2005. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Wat. Res., 39(17):4101–4109. [doi:10.1016/j.watres.2005.07.022]

    Article  Google Scholar 

  • Wang, A.J., Du, D.Z., Ren, N.Q., 2005. An innovative process of simultaneous desulfurization and denitrification by Thiobacillus denitrificans. J. Environ. Sci. Health, 40:1939–1949.

    Article  Google Scholar 

  • Yang, Y., Allen, E.R., 1994a. Biofiltration control of hydrogen sulfide. 1. Design and operational parameters. Journal of Air and Waste Management Association, 44:863–868.

    Article  Google Scholar 

  • Yang, Y., Allen, E.R., 1994b. biofiltration control of hydrogen sulfide. 2. Kinetics, biofilter performance and maintenance. Journal of Air and Waste Management Association, 44:1315–1321.

    Article  Google Scholar 

  • Zhang, T.C., Lampe, D.G., 1999. Sulfur: Limestone autotrophic denitrification processes for treatment of nitrate-contaminated water: Batch experiments. Wat. Res., 33(3):599–608. [doi:10.1016/S0043-1354(98)00281-4]

    Article  Google Scholar 

  • Zheng, P., Xu, X.Y., Hu, B.L., 2004. New Theory and Technology for Biological Nitrogen Removal. Beijing Science Press, Beijing (in Chinese).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Bao-lan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30070017) and the Science and Technology Foundation for Key Project of Zhejiang Province (No. 2003C13005), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, J., Zheng, P., Mahmood, Q. et al. Effects of loading rate and hydraulic residence time on anoxic sulfide biooxidation. J. Zhejiang Univ. - Sci. A 8, 1149–1156 (2007). https://doi.org/10.1631/jzus.2007.A1149

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A1149

Key words

CLC number

Navigation