Skip to main content
Log in

Sources of sulfide in waste streams and current biotechnologies for its removal

  • Personal Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Sulfide-containing waste streams are generated by a number of industries. It is emitted into the environment as dissolved sulfide (S2− and HS) in wastewaters and as H2S in waste gases. Due to its corrosive nature, biological hydrogen sulfide removal processes are being investigated to overcome the chemical and disposal costs associated with existing chemically based removal processes. The nitrogen and sulfur metabolism interacts at various levels of the wastewater treatment process. Hence, the sulfur cycle offers possibilities to integrate nitrogen removal in the treatment process, which needs to be further optimized by appropriate design of the reactor configuration, optimization of performance parameters, retention of biomass and optimization of biomass growth. The present paper reviews the biotechnological advances to remove sulfides from various environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abeling, U., Seyfried, C.F., 1992. Anaerobic-aerobic treatment of high strength ammonium wastewater-nitrogen removal via nitrite. Wat. Sci. Tech., 26(5–6):1007–1015.

    Google Scholar 

  • Æsøy, A., Ødegaard, H., Bentzen, G., 1997. The effect of sulfide and organic matter on the nitrification activity in a biofilm process. Wat. Sci. Tech., 37(1):115–122. [doi:10.1016/S0273-1223(97)00760-9]

    Article  Google Scholar 

  • Almgren, T., Hagström, I., 1974. The oxidation rate of sulfide in sea water. Water Res., 8(7):395–400. [doi:10.1016/0043-1354(74)90069-4]

    Article  Google Scholar 

  • Ammann, H.M., 1986. A new look at physiologic respiratory response to H2S poisoning. J. Haz. Mat., 13(3):369–374. [doi:10.1016/0304-3894(86)85008-7]

    Article  Google Scholar 

  • Balmelle, B., Nguyen, K.M., Capdeville, B., Cornier, J.C., Deguin, A., 1992. Study of factors controlling nitrite build-up in biological processes for water nitrification. Wat. Sci. Tech., 26(5–6):1017–1025.

    Google Scholar 

  • Basu, R., Clausen, E.C., Gaddy, J.L., 1996. Biological conversion of hydrogen sulfide into elemental sulfur. Environ. Prog., 15(4):234–238. [doi:10.1002/ep.670150412]

    Article  Google Scholar 

  • Benschop, A., Janssen, A., Hoksberg, M., Seriwala, R., Abry, R., Ngai, C., 2002. The Shell-Paques/THIOPAQ Gas Desulphurization Process: Successful Start Up First Commercial Unit. http://www.paques.nl (2006/02/15)

  • Bohn, H.L., Fu, Y., Huang, C.H., 1989. Hydrogen sulfide sorption by soils. Soil Sci. Soc. Am. J., 53(6):1914–1917.

    Google Scholar 

  • Brimblecombe, P., Hammer, C., Rodhe, H., Ryaboshapko, A., Boutron, C.F., 1989. Human Influence on the Sulfur Cycle. In: Brimblecombe, P., Lein, A.Y. (Eds.), Evolution of the Global Biogeochemical Sulfur Cycle, SCOPE 39. Wiley, Chichester, UK, p.77–121.

    Google Scholar 

  • Buisman, C.J.N., Prins, W.L., 1994. Symposium “Biological Water Streams, in Environmental Technology and Waste Gas Cleaning”. Heidelberg.

  • Buisman, C.J.N., Geraats, B.G., Ijspeert, P., Lettinga, G., 1990. Optimization of sulfur production in a biotechnological sulfide-removing reactor. Biotechnol. Bioeng., 35(1):50–56. [doi:10.1002/bit.260350108]

    Article  Google Scholar 

  • Butler, L., Nadan, S., 1981. Destructive oxidation of phenolics and sulfides using hydrogen peroxide. AIChE Symp. Ser., 229:108–111.

    Google Scholar 

  • Cadena, F., Peters, R.W., 1988. Evaluation of chemical oxidizers for hydrogen sulfide control. J. Water Pollut. Control Fed., 60(7):1259–1263.

    Google Scholar 

  • Cadenhead, P., Sublette, K.L., 1990. Oxidation of hydrogen sulfide by Thiobacilli. Biotechnol. Bioeng., 35(11): 1150–1154. [doi:10.1002/bit.260351111]

    Article  Google Scholar 

  • CARB (California Air Resources Board), 1999. Air Toxics Emissions Data Collected in the Air. Toxics Hot Spots Program. CEIDARS Database as of January 29, 1999.

  • Cardenas-Gonzalez, B., Ergas, S.J., 1999. Characterization of compost biofiltration media. Journal of the Air and Waste Management Association, 49:784–793.

    Article  Google Scholar 

  • Carlson, D.A., Leiser, C.P., 1966. Soil beds for the control of sewage odors. J. Water Pollut. Control Fed., 38(5): 829–840.

    Google Scholar 

  • Castenholz, R.W., 1977. The effect of sulfide on the blue-green algae of hot springs. II. Yellowstone National Park. Microb. Ecol., 3(2):79–105. [doi:10.1007/BF02010399]

    Article  Google Scholar 

  • Cha, J.M., Cha, W.S., Lee, J.H., 1999. Removal of organosulphur odor compounds by Thiobacillus novellas SRM, sulphur-oxidizing microorganisms. Process Biochemistry, 34(6–7):659–665. [doi:10.1016/S0032-9592(98)00139-3]

    Google Scholar 

  • Chen, K.Y., Morris, J.C., 1972a. Kinetics of oxidation of aqueous sulfide by oxygen. Environ. Sci. Technol., 6(6):529–537. [doi:10.1021/es60065a008]

    Article  Google Scholar 

  • Chen, K.Y., Morris, J.C., 1972b. Oxidation of sulfide by O2: Catalysis and inhibition. J. Sanit. Eng. Div., Proc. Am. Soc. Civ. Eng., 98(1):215–227.

    Google Scholar 

  • Chen, S.K., Juaw, C.K., Cheng, S.S., 1991. Nitrification and denitrification of high strength ammonium and nitrite wastewater with biofilm reactors. Wat. Sci. Tech., 23(7–9):1417–1425.

    Google Scholar 

  • Cho, K.S., Hirai, M., Makoto, S., 1992. Enhanced removal efficiency of malodorous gases in a pilot-scale peat biofilter inoculated with Thiobacillus thioparus DW44. Journal of Fermentation and Bioengineering, 73(1):46–50. [doi:10.1016/0922-338X(92)90230-R]

    Article  Google Scholar 

  • Cho, K.S., Ryu, H.W., Lee, N.Y., 2000. Biological deodorization of hydrogen sulfide using porous lava as a carrier of Thiobacillus thiooxidans. Journal of Bioscience and Bioengineering, 90(1):25–31. [doi:10.1016/S1389-1723(00)80029-8]

    Article  Google Scholar 

  • Chou, M.S., Cheng, W.H., 1997. Screening of biofiltering material for VOC treatment. Journal of the Air and Waste Management Association, 47:674–681.

    Article  Google Scholar 

  • Chung, Y.C., Huang, C., Tseng, C.P., 1996. Operation optimization of Thiobacillus thioparus CH11 biofilter for hydrogen sulfide removal. Journal of Biotechnology, 52(1):31–38. [doi:10.1016/S0168-1656(96)01622-7]

    Article  Google Scholar 

  • Chung, Y.C., Huang, C., Li, C.F., 1997. Removal characteristics of H2S by Thiobacillus novellus CH3 biofilter in autotrophic and mixotrophic environments. J. Environ. Sci. Health, 32(5):1435–1450.

    Google Scholar 

  • Chung, Y.C., Huang, C., Tseng, C.P., 2001. Biotreatment of hydrogen sulfide- and ammonia-containing waste gases by fluidized bed bioreactor. Journal of the Air and Waste Management Association, 51:163–172.

    Article  Google Scholar 

  • Clark, O.G., Edeogu, I., Feddes, J., Coleman, R.N., Abolghasemi, A., 2004. Effects of operating temperature and supplemental nutrients in a pilot-scale agricultural biofilter. Canadian Biosystems Engineering, 46:6.7–6.16.

    Google Scholar 

  • Cline, J.D., Richards, F.A., 1969. Oxygenation of hydrogen sulfide in seawater at constant salinity, temperature, and pH. Environ. Sci. Techol., 3(9):838–843. [doi:10.1021/es60032a004]

    Article  Google Scholar 

  • Cork, D.J., Jerger, D.E., Maka, A., 1986. Biocatalytic production of sulfur from process waste streams. Biotechnol. Bioeng., 16:149–162.

    Google Scholar 

  • Cox, H.H.J., Deshusses, A.M., 2001. Co-treatment of H2S and toluene in a biotrickling filter. Chemical Engineering Journal, 3901:1–10.

    Google Scholar 

  • Cypionka, H., Widdel, F., Pfennig, N., 1985. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbial. Ecol., 31(1):39–45. [doi:10.1111/j.1574-6968.1985.tb01129.x]

    Article  Google Scholar 

  • Dastous, P.A., Soreanu, G., Nikiema, J., Heitz, M., 2005. Biofiltration of Three Alcohols on a Mature Bed Compost. 2005 A&WMA Annual Conference Proceedings CD-ROM, Paper #1038. Air and Water Management Association, Pittsburgh, PA.

  • Davidova, I., Hicks, M.S., Fedorak, P.M., Sufita, J.M., 2001. The influence of nitrate on microbial processes in oil industry production waters. Journal of Industrial Microbiology and Biotechnology, 27(2):80–86. [doi:10.1038/sj.jim.7000166]

    Article  Google Scholar 

  • Dawson, D.S., 1993. Biological treatment of gaseous emissions. Water Environment Research, 65:368–371.

    Google Scholar 

  • Degorce-Dumas, H.R., Kowal, S., LeCloirec, P., 1997. Microbiological oxidation of hydrogen sulfide in a biofilter. Canadian Journal of Microbiology, 43:263–271.

    Article  Google Scholar 

  • Devinny, J.S., Chitwood, D.E., 1999. Co-Treatment of VOC’s in Low-sulfide Biofilters. 92nd Annual Meeting and Exhibition. Air and Waste Management Associations, Missouri, St. Louis, p.9.

    Google Scholar 

  • Elias, A., Barona, A., Arreguy, A., Rios, J., Aranguiz, I., Penas, J., 2002. Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochemistry, 37(8):813–820. [doi:10.1016/S0032-9592 (01)00287-4]

    Article  Google Scholar 

  • Elizabeth, D., 2005. http://www.chemrisk.com/team/pdfresume/DahlenResumeV2%20_2_Pdf

  • Fdz-Polanco, F., Villaverde, S., Garcia, P.A., 1996. Nitrite accumulation in submerged biofilters-combined effects. Wat. Sci. Tech., 34(3–4):371–378. [doi:10.1016/0273-1223(96)00601-4]

    Article  Google Scholar 

  • Gabriel, D., Deshusses, A.M., 2003. Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proceedings of the National Academy of Science of the United States of America, 100(11): 6308–6312. [doi:10.1073/pnas.0731894100]

    Article  Google Scholar 

  • Gadd, G.M., White, C., 1993. Microbial treatment of metal pollution—A working biotechnology? Tibtech., 11:353–359.

    Article  Google Scholar 

  • Gadre, R.V., 1989. Removal of hydrogen sulfide from biogas by chemoautotrophic fixed-film bioreactor. Biotechnol. Bioeng., 34(3):410–414. [doi:10.1002/bit. 260340317]

    Article  Google Scholar 

  • Garrido, J.M., van Bethum, W.A.J., van Loosdrecht, M.C.M., Heijnen, J.J., 1997. Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng., 53(2):168–178. [doi:10.1002/(SICI)1097-0290(19970120)53:2〈168::AID-B IT6〉3.0.CO;2-M]

    Article  Google Scholar 

  • Garuti, G., Dohanyos, M., Tilche A., 1992. Anaerobic-aerobic combined process for the treatment of sewage with nutrient removal: the ananox process. Wat. Sci. Tech., 25:383–394.

    Google Scholar 

  • Gostelow, P., Parsons, S.A., 2000. Sewage treatment works odour measurement. Wat. Sci. Tech., 41(6):33–40.

    Google Scholar 

  • Hao, O.J., Chen, J.M., Huang, L., Buglass, R.L., 1996. Sulfate-reducing bacteria. Crit. Rev. Env. Sci. Technol., 26:155–187.

    Article  Google Scholar 

  • Henshaw, P.F., Bewtra, J.K., Biswas, N., 1998. Hydrogen sulfide conversion to elemental sulfur in a suspended-growth continuous stirred tank reactor using Chlorobium limicola. Water Res., 32(6):1769–1778. [doi:10.1016/S0043-1354(97)00393-X]

    Article  Google Scholar 

  • Hooper, A.B., Terry, K.R., 1973. Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bacteriol., 115:480–485.

    Google Scholar 

  • HSDB (Hazardous Substances Data Bank), 1999. U.S. National Library of Medicine, Bethesda, MD. http://sis.nlm.nih.gov/sis1

  • Hulshoff Pol, L.W., Lens, P.N.L., Stams, A.J.M., Lettinga, G., 1998. Anaerobic treatment of sulfate-rich wastewaters. Biodegradation, 9(3/4):213–224. [doi:10.1023/A:100830 7929134]

    Article  Google Scholar 

  • Hvitved-Jacobsen, T., Vollertsen, J., Yongsiri, C., Nielsen, A.H., Abdul-Talib, S., 2002. Sewer Microbial Processes, Emissions and Impacts. 3rd International Conference on Sewer Processes and Networks, April 15–17, Paris, France.

  • Janssen, A.J.H., Sleyster, R., van der Kaa, C., Jochemsen, A., Bontsema, J., Lettinga, G., 1995. Biological sulfide oxidation in a fed-batch reactor. Biotechnol. Bioeng., 47(3):327–333. [doi:10.1002/bit.260470307]

    Article  Google Scholar 

  • Jensen, A.B., Webb, C., 1995. Treatment of H2S-containing gases: A review of microbiological alternatives. Enzyme Microb. Technol., 17(1):2–10. [doi:10.1016/0141-0229(94)00080-B]

    Article  Google Scholar 

  • Jorio, H., Heitz, M., 1999. Traitement de l’air par biofiltration. Canadian Journal of Civil Engineering, 26(4):402–424. [doi:10.1139/cjce-26-4-402]

    Article  Google Scholar 

  • Jørgensen, B.B., Kuenen, J.G., Cohen, Y., 1979. Microbial transformation of sulfur compounds in a stratified lake (Solar Lake, Sinai). Limnol. Oceanogr., 24:799–822.

    Article  Google Scholar 

  • Kim, Y.J., Kim, B.W., 1996. Desulfurization in a platetype gas-lift photobioreactor using light emitting diodes. Korean J. Chem. Eng., 13(6):606–611.

    Article  Google Scholar 

  • Kim, H., Kim, J.Y., Chung, S.J., Xie, Q., 2002. Long-term operation of a biofilter for simultaneous removal of H2S and NH3. Journal of the Air and Waste Management Association, 52:1389–1398.

    Article  Google Scholar 

  • Kleerebezem, R., Mendez, R., 2002. Autotrophic denitrification for combined hydrogen sulfide removal from biogas and post-denitrification. Wat. Sci. Tech., 45(10):349–356.

    Google Scholar 

  • Koe, L.C.C., Yang, F., 2000. A bioscrubber for hydrogen sulfide removal. Wat. Sci. Tech., 41(6):141–145.

    Google Scholar 

  • Kuenen, J.G., 1975. Colorless sulfur bacteria and their role in the sulfur cycle. Plant and Soil, 43(1–3):49–76. [doi:10.1007/BF01928476]

    Article  Google Scholar 

  • Kuenen, J.G., Robertson, L.A., 1992. The use of natural bacterial populations for the treatment of sulfur containing wastewater. Biodegradation, 3(2–3):239–254. [doi:10.1007/BF00129086]

    Article  Google Scholar 

  • Lampe, D.G., Zhang, T.C., 1996. Evaluation of Sulfur-based Autotrophic Denitrification. Proceedings of the HSRC/WERC Joint Conference on the Environment. Great Plains, Rocky Mountain Hazardous Substance Research Center. http://www.engg.ksu.edu/HSRC/96Proceed/lampe.pdf (2006/02/16)

  • Losier, L., 1990. Environmental Status Report of the Canadian Petroleum Refinery Industry 1987. Report EPS 1/PN/3. Environment Canada, Ottawa, Canada.

    Google Scholar 

  • Malhautier, L., Gracian, C., Roux, C.J., Fanlo, L.J., le Cloirec, P., 2003. Biological treatment process of air loaded with an ammonia and hydrogen sulfide mixture. Chemosphere, 50(1):145–153. [doi:10.1016/S0045-6535(02)00395-8]

    Article  Google Scholar 

  • Martin, J.L., Rubin, A.J., 1978. Removal of Sulfides by Catalytic Oxygenation in Alkaline Media. Proceedings of 33rd International Waste Conference, Purdue University, p.814–822.

  • Mathioudakis, V.L., Vaiopoulou, E., Aivasidis, A., 2005. Addition of Nitrate for Odor Control in Sewer Networks: Laboratory and Field Experiments. Conference on Environmental Science and Technology, September 1–3, 2005. Rhodes, Greece.

  • McComas, C., Sublette, L.K., 2001. Characterization of a novel biocatalyst system for sulfide oxidation. Biotechnology Progress, 17(3):439–446. [doi:10.1021/ bp0100169]

    Article  Google Scholar 

  • Melidis, P., Vaiopoulou, E., Aivasidis, A., 2004. Autotrophic Denitrification for Hydrogen Sulfide Removal from Petrochemical Wastewater. 10th World Congress of Anaerobic Digestion, Montreal, Canada.

  • Mesa, M.M., Macías, M., Cantero, D., 2002. Biological iron oxidation by Acidithiobacillus ferrooxidans. Chemical and Biochemical Engineering Quarterly, 16(2):69–73.

    Google Scholar 

  • MOE (Ontario Ministry of the Environment), 1992. Background Document on the Development of the Draft Petroleum Refining Sector Effluent Limits Regulation. Toronto, Ontario.

  • Morgan-Sagastume, M.J., Noyola, A., Revah, S., Ergas, J.S., 2003. Changes in physical properties of a compost biofilter treating hydrogen sulfide. Journal of Air and Waste Management Association, 53:1011–1021.

    Article  Google Scholar 

  • Nielsen, P.H., Raunkjaer, K., Norsker, N.H., Jensen, N.A., Hvitved-Jacobsen, T., 1992. Transformation of wastewater in sewer systems—A review. Wat. Sci. Tech., 25(6):17–31.

    Google Scholar 

  • Nishimura, S., Yoda, M., 1997. Removal of hydrogen sulfide from anaerobic biogas using a bio-scrubber. Wat. Sci. Tech., 36(6–7):349–356. [doi:10.1016/S0273-1223(97) 00542-8]

    Article  Google Scholar 

  • Oh, K.J., Kim, D., Lee, I.H., 1998. Development of effective hydrogen sulfide removing equipment using Thiobacillus sp. IW. Environ. Pollut., 99(1):87–92. [doi:10.1016/ S0269-7491(97)00168-1]

    Article  Google Scholar 

  • Oren, A., Padan, E., 1978. Introduction of anaerobic, photoautotrophic growth in the cyanobacterium Oscillatoria limnetica. J. Bacteriol., 133:558–563.

    Google Scholar 

  • Oren, A., Shilo, M., 1979. Anaerobic heterotrophic dark metabolism in the cyanobacterium Oscillatoria limnetica: sulfur respiration and lactate fermentation. Arch. Microbiol., 122(1):77–84. [doi:10.1007/BF00408049]

    Article  Google Scholar 

  • Ottengraf, S.P.P., 1986. Exhaust Gas Purification. Chapter (12) in Biotechnology 8. In: Rehm, H.J., Reed, G. (Eds.), VCH Verlagsgesellschaft. Weinheim, Germany, p.425–452.

  • Oyarzún, P., Arancibia, F., Canales, C., Aroca, G.E., 2003. Biofiltration of high concentration of hydrogen sulfide using Thiobacillus thioparus. Process Biochemistry, 39(2):165–170. [doi:10.1016/S0032-9592(03)00050-5]

    Article  Google Scholar 

  • Rinzema, A., Lettinga, G., 1988. Anaerobic Treatment of Sulfate Containing Waste Water. In: Wise, D.L. (Ed.), Biotreatment Systems. CRC Press, Boca Raton, FL, 3:65–109.

    Google Scholar 

  • Scheeren, P.J.H., Koch, R.O., Buisman, C.J.N., Barnes, L.J., Versteegh, J.H., 1991. New biological treatment plant for heavy metal contaminated groundwater. Trans. Instn. Min. Metall. (Sect. C: Mineral Process. Extr. Metall.), 101:C190–C199.

    Google Scholar 

  • Schieder, D., Quicker, P., Schneider, R., Winter, H., Prechtl, S., Faulstich, M., 2003. Microbiological removal of hydrogen sulfide from biogas by means of a separate biofilter system: Experience with technical operation. Wat. Sci. Tech., 48(4):209–212.

    Google Scholar 

  • Sercu, B., Núñez, D., Langenhove, V.H., Aroca, G., Verstraete, W., 2005. Operational and microbiological aspects of a bioaugmented two-stage biotrickling filter removing hydrogen sulfide and dimethyl sulfide. Biotechnology and Bioengineering, 90(2):259–269. [doi:10.1002/bit.20443]

    Article  Google Scholar 

  • Shareefdeen, Z., Herner, B., Wilson, S., 2002. Biofiltration of nuisance sulfur gaseous odors from a meat rendering plant. Journal of Chemical Technology and Biotechnology, 77(12):1296–1299. [doi:10.1002/jctb.709]

    Article  Google Scholar 

  • Soreanu, G., Al-Jamal, M., Béland, M., 2005. Biogas Treatment Using an Anaerobic Biosystem. Proceedings of the 3rd Canadian Organic Residuals and Biosolids Management Conference, Calgary, AB, p.502–513.

  • Sorokin, Y.I., 1972. The bacterial population and the process of hydrogen sulfide oxidation in the Black Sea. J. Conseil Int. Explor. Mer., 34:423–455.

    Article  Google Scholar 

  • Sublette, K.L., 1987. Aerobic oxidation of sulfide by Thiobacillus denitrificans. Biotechnol. Bioeng., 29(6):690–695. [doi:10.1002/bit.260290605]

    Article  Google Scholar 

  • Sublette, K.L., Sylvester, D., 1987a. Oxidation of hydrogen sulfide by continuous cultures of Thiobacillus denitrificans. Biotechnol. Bioeng., 29(6):753–758. [doi:10.1002/bit.260290613]

    Article  Google Scholar 

  • Sublette, K.L., Sylvester, D., 1987b. Oxidation of hydrogen sulfide by mixed cultures of Thiobacillus denitrificans and heterotrophs. Biotechnol. Bioeng., 29(6):759–761. [doi:10.1002/bit.260290614]

    Article  Google Scholar 

  • Sublette, K.L., Heskth, R.P., Hasan, S., 1994. Microbial oxidation of hydrogen sulfide in a pilot-scale bubble column. Biotechnology Progress, 10(6):611–614. [doi:10.1021/bp00030a005]

    Article  Google Scholar 

  • Syed, M., Soreanu, G., Falletta, P., Béland, M., 2006. Removal of hydrogen sulfide from gas streams using biological processes—A review. Canadian Biosystems Engineering, 48:210–214.

    Google Scholar 

  • Takano, B., Koshida, M., Fujiwara, Y., Sugimori, K., Takayangi, S., 1997. Influence of sulfur-oxidizing bacteria on the budget of sulfate in Yugama Crater Lake, Kusatsu-Shirane volcano, Japan. Biogeochemistry, 38(3): 227–253. [doi:10.1023/A:1005805100834]

    Article  Google Scholar 

  • Tichý, R., Janssen, A., Grotenhuis, J.T.C., Lettinga, G., Rulkens, W.H., 1994. Possibilities for using biologically-produced sulfur particles for cultivation of Thiobacilli with respect to bioleaching processes. Biores. Technol., 48(3):221–227. [doi:10.1016/0960-8524(94)90150-3]

    Article  Google Scholar 

  • Tichý, R., Lens, P., Grotenhuis, J.T.C., Bos, P., 1998. Solid-state reduced sulfur compounds: environmental aspects and bioremediation. Crit. Rev. Environ. Sci. Tech., 28:1–40.

    Article  Google Scholar 

  • USEPA, 1998. Sewer and Tank Sediment Flushing. Case Studies EPA/600/R-98/157, Chapter 4: Hydrogen Sulfide and Sulfuric Acid Estimation Techniques.

  • Vaiopoulou, E., Melidis, P., Aivasidis, A., 2005. Sulfide removal in wastewater from petrochemical industries by autotrophic denitrification. Water Res., 39(17):4101–4109. [doi:10.1016/j.watres.2005.07.022]

    Article  Google Scholar 

  • van der Hoek, J.P., Latour, P.J.M., Klapwijk, A., 1988. Effect of hydraulic residence time on microbial sulfide production in an upflow sludge blanket denitrification reactor fed with methanol. Appl. Microbiol. Biotechnol., 28(4–5):493–499. [doi:10.1007/BF00268221]

    Article  Google Scholar 

  • Wani, A.H., Lau, A.K., Branion, M.R., 1999. Biofiltration control of pulping odors-hydrogen sulfide: performance, microkinetics and coexistence effects of organo-sulfur species. Journal of Chemical Technology and Biotechnology, 74(1):9–16. [doi:10.1002/(SICI)1097-4660 (199901)74:1〈9::AID-JCTB981〉3.0.CO;2-B]

    Article  Google Scholar 

  • Watkins, J.P., 1977. Controlling sulfur compounds in wastewaters. Chemical Engineering, 84:61–65.

    Google Scholar 

  • WHO, 1981. Environmental Health Criteria 19. Geneva.

  • Widdel, F., 1988. Microbiology and Ecology of Sulfate- and Sulfur Reducing Bacteria. In: Zehnder, A.J.B. (Ed.), Biology of Anaerobic Microorganisms. Wiley, New York, p.469–585.

    Google Scholar 

  • Yang, Y., 1992. Biofiltration for Control of Hydrogen Sulfide. Ph.D Thesis, University of Florida, Gainesville, FL, p.199.

    Google Scholar 

  • Yang, Y., Allen, E.R., 1994a. Biofiltration control of hydrogen sulfide. 1. Design and operational parameters. Journal of the Air and Waste Management Association, 44:863–868.

    Article  Google Scholar 

  • Yang, Y., Allen, E.R., 1994b. Biofiltration control of hydrogen sulfide. 2. Kinetics, biofilter performance and maintenance. Journal of the Air and Waste Management Association, 44:1315–1321.

    Article  Google Scholar 

  • Yoo, H.S., Ahn, K.H., Lee, H.J., Lee, K.H., Kwak, Y.J., K.G., Song, 1999. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification (SND) via nitrite in an intermittently aerated reactor. Water Res., 33(1):145–154. [doi:10.1016/S0043-1354(98)00159-6]

    Article  Google Scholar 

  • Zehnder, A.J.B., 1988. Principles of the Biological Sulfur Cycle. Biology of Anaerobic Microorganisms, John Wiley & Sons, Inc., USA, p.546–560.

    Google Scholar 

  • Zehnder, A.J.B., Zinder, S.H., 1980. The Sulfur Cycle. In: Hutzinger, O. (Ed.), The Handbook of Environmental Chemistry, Pt. A. Springer-Verlag, Heidelberg, 1:105–145.

    Google Scholar 

  • Zhang, L., Hirai, M., Shoda, M., 1991. Removal characteristics of dimethyl sulfide, methanethiol and hydrogen sulfide by Hiphomicrobium sp. I55 isolated from peat biofilter. Journal of Fermentation and Bioengineering, 72(5):392–396. [doi:10.1016/0922-338X(91)90093-V]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hu Bao-lan.

Additional information

Project supported by the National Natural Science Foundation of China (No. 30070017) and the Science and Technology Foundation for Key Project of Zhejiang Province (No. 2003C13005), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahmood, Q., Zheng, P., Cai, J. et al. Sources of sulfide in waste streams and current biotechnologies for its removal. J. Zhejiang Univ. - Sci. A 8, 1126–1140 (2007). https://doi.org/10.1631/jzus.2007.A1126

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A1126

Key words

CLC number

Navigation