Skip to main content
Log in

Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Hyperspectral reflectance (350∼2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlrichs, J.S., Bauer, M.E., 1983. Relation of agronomic and multispectral reflectance characteristics of spring wheat canopies. Agronomy Journal, 75:987–993.

    Article  Google Scholar 

  • Aparicio, N., Villegas, D., Casadesus, J., Araus, J.L., Royo, C., 2000. Spectral vegetation indices as non-destructive tools for determining durum wheat yield. Agronomy Journal, 92:83–91.

    Article  Google Scholar 

  • Asseng, S., Keulen, H., Stol, W., 2000. Performance and application of the APSIMN wheat model in the Netherlands. European Journal of Agronomy, 12:37–54. [doi:10.1016/S1161-0301(99)00044-1]

    Article  Google Scholar 

  • Best, R.G., Harlan, J.C., 1985. Spectral estimation of green leaf area index of oats. Remote Sensing of Environment, 17:27–36. [doi:10.1016/0034-4257(85)90110-5]

    Article  Google Scholar 

  • Boegh, E., Soegaard, H., Broge, N., Hasager, C.B., Jensen, N.O., Schelde, K., Thomsen, A., 2002. Airborne multis pectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture. Remote Sensing of Environment, 81:179–193. [doi:10.1016/S0034-4257(01)00342-X]

    Article  Google Scholar 

  • Bors, A.G., Gabbouj, G., 1994. Minimal topology for a radial basis function neural network for pattern classification. Digital Signal Processing, 4(3):173–188. [doi:10.1006/dspr.1994.1016]

    Article  Google Scholar 

  • Bors, A.G., Pitas, I., 1996. Median radial basis functions neural network. IEEE Trans. on Neural Networks, 7(6):1351–1364. [doi:10.1109/72.548164]

    Article  Google Scholar 

  • Bors, A.G., Pitas, I., 1998. Optical flow estimation and moving object segmentation based on median radial basis function network. IEEE Trans. on Image Processing, 7(5):693–702. [doi:10.1109/83.668026]

    Article  Google Scholar 

  • Bors, A.G., Pitas, I., 1999. Object classification in 3-D images using alpha-trimmed mean radial basis function network. IEEE Trans. on Image Processing, 8(12):1744–1756. [doi:10.1109/83.806620]

    Article  Google Scholar 

  • Broge, N.H., Leblanc, E., 2001. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76:156–172. [doi:10.1016/S0034-4257(00)00197-8]

    Article  Google Scholar 

  • Broge, N.H., Mortensen, J.V., 2002. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sensing of Environment, 81:45–57. [doi:10.1016/S0034-4257(01)00332-7]

    Article  Google Scholar 

  • Broomhead, D.S., Lowe, D., 1988. Multivariable functional interpolation and adaptive networks. Complex Systems, 2:321–355.

    MATH  MathSciNet  Google Scholar 

  • Casdagli, M., 1989. Nonlinear prediction of chaotic time series. Phys. D, 35:335–356. [doi:10.1016/0167-2789(89)90074-2]

    Article  MATH  MathSciNet  Google Scholar 

  • Cha, I., Kassam, S.A., 1996. RBFN restoration of nonlinearly degraded images. IEEE Trans. on Image Processing, 5(6): 964–975. [doi:10.1109/83.503912]

    Article  Google Scholar 

  • Chatzis, V., Bors, A.G., Pitas, I., 1999. Multimodal decision-level fusion for person authentification. IEEE Trans. on Systems, Man, and Cybernetics, Part A: Systems and Humans, 29(6):674–680. [doi:10.1109/3468.798073]

    Article  Google Scholar 

  • Chen, S., Cowan, C.F.N., Grant, P.M., 1991. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. on Neural Networks, 2(2):302–309. [doi:10.1109/72.80341]

    Article  Google Scholar 

  • Cheng, Q., Huang, J., Wang, X., Wang, R., 2003. In situ hyperspectral data analysis for pigment content estimation of rice leaves. J. Zhejiang Univ. Sci., 4(6):727–733.

    Article  Google Scholar 

  • Cheng, Q., 2006. Multisensor comparisons for validation of MODIS vegetation indices. Pedosphere, 16(3):362–370. [doi:10.1016/S1002-0160(06)60064-7]

    Article  Google Scholar 

  • Christensen, S., Goudriaan, J., 1993. Deriving light interception and biomass from spectral reflectance ratio. Remote Sensing of Environment, 43:87–95. [doi:10.1016/0034-4257(93)90066-7]

    Article  Google Scholar 

  • Curran, P.J., Dungan, J.L., Peterson, D.L., 2001. Estimating the foliar biochemical concentration of leaves with reflectance spectrometry-testing the Kolaly and Clark methodologies. Remote Sensing of Environment, 76:349–359. [doi:10.1016/S0034-4257(01)00182-1]

    Article  Google Scholar 

  • Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Brown de Colstoun, E., McMurtrey III, J.E., 2000. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74:229–239. [doi:10.1016/S0034-4257(00)00113-9]

    Article  Google Scholar 

  • Gitelson, A.A., Kaufman, Y.J., Merzlyak, M.N., 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58:289–298. [doi:10.1016/S0034-4257(96)00072-7]

    Article  Google Scholar 

  • Gitelson, A.A., Kaufman, Y.J., Stark, R., Rundquist, D., 2002. Novel algorithm for remote estimation of vegetation fraction. Remote Sensing of Environment, 80:76–87. [doi:10.1016/S0034-4257(01)00289-9]

    Article  Google Scholar 

  • Goel, N.S., Qi, W., 1994. Influences of canopy architecture on relationships between various vegetation indices and LAI and FPAR: a computer simulastion. Remote Sensing of Environment, 10:309–347.

    Article  Google Scholar 

  • Gong, P., Pu, R., Binging, G.S., Larrieu, M.R., 2003. Estimation of forest leaf area index using vegetation indices derived from hyperion hyperspectral data. IEEE Trans. on Geoscience and Remote Sensing, 41(6):1355–1362. [doi:10.1109/TGRS.2003.812910]

    Article  Google Scholar 

  • Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J., Dextraze, L., 2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81:416–426. [doi:10.1016/S0034-4257(02)00 018-4]

    Article  Google Scholar 

  • Haykin, S., 1994. Neural Networks: A Comprehensive Foundation. Upper Saddle River, Prentice Hall, NJ.

    MATH  Google Scholar 

  • Huete, A.R., 1988. A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25:295–309. [doi:10.1016/0034-4257(88)90106-X]

    Article  Google Scholar 

  • Jamieson, P.D., Porter, J.R., Goudrian, J., Ritchie, J.T., Keulen, H., Stol, W., 1998. A comparison of the models AFRCWHEAT2, CERES-wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research, 55:23–44. [doi:10.1016/S0378-4290(97)00060-9]

    Article  Google Scholar 

  • Jordan, C.F., 1969. Derivation of leaf area index from quality of light on the forest floor. Ecology, 50:663–666. [doi:10.2307/1936256]

    Article  Google Scholar 

  • Kim, M.S., Daughtry, C.S.T., Chappelle, E.W., McMurtrey III, J.E., Walthall, C.L., 1994. The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation (Apar). Proc. 6th Symposium on Physical Measurements and Signatures in Remote Sensing. Val D’Isere, France, p.299–306.

  • Kohonen, T.K., 1989. Self-organization and Associative Memory. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Lukina, E.V., Stone, M.L., Raun, W.R., 1999. Estimating vegetation coverage in wheat using digital images. J. Plant Nutr., 22:341–350.

    Article  Google Scholar 

  • Matej, S., Lewitt, R.M., 1996. Practical considerations for 3-D image reconstruction using spherically symmetric volume elements. IEEE Trans. on Medical Imaging, 15(1):68–78. [doi:10.1109/42.481442]

    Article  Google Scholar 

  • Moody, J., 1989. Fast learning in networks of locally-tuned processing units. Neural Computation, 1:281–294.

    Article  Google Scholar 

  • Musavi, M.T., Ahmed, W., Chan, K.H., Faris, K.B., Hummels, D.M., 1992. On the training of radial basis function classifiers. Neural Networks, 5:595–603. [doi:10.1016/S0893-6080(05)80038-3]

    Article  Google Scholar 

  • Mutanga, O., Skidmore, A.K., 2004. Integrating imaging spectroscopy and neural networks to map grass quality in the Kruger National Park, South Africa. Remote Sensing of Environment, 90:104–115. [doi:10.1016/j.rse.2003.12.004]

    Article  Google Scholar 

  • Niranjan, M., Fallside, F., 1990. Neural networks and radial basis functions in classifying static speech patterns. Computer Speech and Language, 4:275–289. [doi:10.1016/0885-2308(90)90009-U]

    Article  Google Scholar 

  • O’Neal, M.R., Engel, B.A., Ess, D.R., Frankenberger, J.R., 2002. Neural network prediction of maize yield using alternative data coding algorithms. Biosystems Engineering, 83(1):31–45. [doi:10.1006/bioe.2002.0098]

    Article  Google Scholar 

  • Park, J., Sandberg, J.W., 1991. Universal approximation using radial basis functions network. Neural Computation, 3:246–257.

    Article  Google Scholar 

  • Pearson, R.L., Miller, L.D., 1972. Remote Mapping of Standing Crop Biomass for Estimation of the Productivity of the Short-grass Prairie, Pawnee National Grasslands, Colorado. Proc. 8th International Symposium on Remote Sensing of Environment, p.1357–1381.

  • Peňuelas, J., Baret, F., Filella, I., 1995. Semi-empirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica, 31(2):221–230.

    Google Scholar 

  • Poggio, T., Girosi, F., 1990. Networks for approximation and learning. Proc. IEEE, 78(9):1481–1497. [doi:10.1109/5.58326]

    Article  MATH  Google Scholar 

  • Qi, J., Chehbouni, A., Huete, A.R., Kerr, Y.H., Sorooshian, S., 1994. A modified soil adjusted vegetation index. Remote Sensing of Environment, 48:119–126. [doi:10.1016/0034-4257(94)90134-1]

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., Baret, F., 1996. Optimization of soiladjusted vegetation indices. Remote Sensing of Environment, 55:95–107. [doi:10.1016/0034-4257(95)00186-7]

    Article  Google Scholar 

  • Roujean, J.L., Breon, F.M., 1995. Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3):375–384. [doi:10.1016/0034-4257(94)00114-3]

    Article  Google Scholar 

  • Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W., Harlan, J.C., 1974. Monitoring the Vernal Advancements and Retrogradation of Natural Vegetation. NASA/GSFC, Final Report. Greenbelt, MD, USA, p.1–137.

  • Sanner, R.M., Slotine, J.E., 1992. Gaussian networks for direct adaptive control. IEEE Trans. on Neural Networks, 3(6):837–863. [doi:10.1109/72.165588]

    Article  Google Scholar 

  • Serrano, L., Filella, I., Peňuelas, J., 2000. Remote sensing of biomass and yield of winter wheat under different nitrogen supplies. Crop Sci., 40:723–731.

    Article  Google Scholar 

  • Sims, D.A., Gamon, J.A., 2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(2–3):337–354. [doi:10.1016/S0034-4257(02)00010-X]

    Article  Google Scholar 

  • Tang, Y., Wang, R., Huang, J., 2004. Relations between red edge characteristics and agronomic parameters of crop. Pedosphere, 4(4):467–474.

    Google Scholar 

  • Thenkabail, P.S., Smith, R.B., de Pauw, E., 2000. Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71:158–182. [doi:10.1016/S0034-4257(99)00067-X]

    Article  Google Scholar 

  • Tou, J.T., Gonzalez, R.C., 1974. Pattern Recognition. Reading, Addison-Wesley, MA.

    MATH  Google Scholar 

  • Wei, G.Q., Hirzinger, G., 1997. Parametric shape-from-shading by radial basis functions. IEEE Trans. on Patt. Anal. & Machine Intell., 19(4):353–365. [doi:10.1109/34.588016]

    Article  Google Scholar 

  • Yang, X., Huang, J., Wang, F., Wang, X., Yi, Q., Wang, Y., 2006. A modified chlorophyll absorption continuum index for chlorophyll estimation. J. Zhejiang Univ. Sci. A, 7(12):2002–2006. [doi:10.1631/jzus.2006.A2002]

    Article  Google Scholar 

  • Zhang, J., Wang, K., Bailey, J.S., Wang, R., 2006. Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16(1):108–117. [doi:10.1016/S1002-0160(06)60032-5]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang Jing-feng.

Additional information

Project (Nos. 40571115 and 40271078) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Xh., Huang, Jf., Wang, Jw. et al. Estimation of vegetation biophysical parameters by remote sensing using radial basis function neural network. J. Zhejiang Univ. - Sci. A 8, 883–895 (2007). https://doi.org/10.1631/jzus.2007.A0883

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0883

Key words

CLC number

Navigation