Skip to main content
Log in

New hybrid model of proton exchange membrane fuel cell

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Model and simulation are good tools for design optimization of fuel cell systems. This paper proposes a new hybrid model of proton exchange membrane fuel cell (PEMFC). The hybrid model includes physical component and black-box component. The physical component represents the well-known part of PEMFC, while artificial neural network (ANN) component estimates the poorly known part of PEMFC. The ANN model can compensate the performance of the physical model. This hybrid model is implemented on Matlab/Simulink software. The hybrid model shows better accuracy than that of the physical model and ANN model. Simulation results suggest that the hybrid model can be used as a suitable and accurate model for PEMFC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmed, M.A., Istvan, E., 2005. Online optimal management of PEM fuel cells using neural networks. IEEE Transactions on Power Delivery, 20(2):1051–1059. [doi:10.1109/TPWRD.2004.833893]

    Article  Google Scholar 

  • Al-Baghdadi, M.A.R.S., 2005. Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations. Renewable Energy, 30(10): 1587–1599. [doi:10.1016/j.renene.2004.11.015]

    Article  Google Scholar 

  • Biyikoglu, A., 2005. Review of proton exchange membrane fuel cell models. International Journal of Hydrogen Energy, 30(11):1181–1212. [doi:10.1016/j.ijhydene.2005.05.010]

    Article  Google Scholar 

  • Correa, J.M., Farret, F.A., Popov, V.A., Simoes, M.G., 2005. Sensitivity analysis of the modelling parameters used in simulation of proton exchange membrane fuel cells. IEEE Transactions on Energy Conversion, 20(1):211–218. [doi:10.1109/TEC.2004.842382]

    Article  Google Scholar 

  • Costamagna, P., 2001. Transport phenomena in polymer membrane fuel cells. Chem. Eng. Sci., 56(2):323–332. [doi:10.1016/S0009-2509(00)00232-3]

    Article  Google Scholar 

  • Dutta, S., Shimpalee, S., Van, Z.J., 2000. Three-dimensional numerical simulation of straight channel PEM fuel cells. J. Appl. Electrochem., 30(2):135–146. [doi:10.1023/A:1003964201327]

    Article  Google Scholar 

  • Fazil, M.S., Serhat, Y., 2005. Modelling Transients of a Proton Electrolyte Membrane Fuel Cell. Proceedings International Hydrogen Energy Congress and Exhibition IHEC.

  • Furrer, D., Thaler, S., 2005. Neural-network modeling. Advanced Materials and Processes, 11(163):42–46.

    Google Scholar 

  • Heinzel, A., Nolte, R.K., Le, D.H., Zedda, M., 1998. Membrane fuel cells—Concepts and system design. Electrochimica Acta, 43(24):3817–3820. [doi:10.1016/S0013-4686(98)00141-8]

    Article  Google Scholar 

  • Jemeï, S., Hissel, D., Péra, M.C., Kauffmann, J.M., 2003. On-board fuel cell power supply modeling on the basis of neural network methodology. Journal of Power Sources, 124(2):479–486. [doi:10.1016/S0378-7753(03)00799-7]

    Article  Google Scholar 

  • Lee, W.Y., Park, G.G., Yang, T.H., Yoon, Y.G., Kim, C.S., 2004. Empirical modeling of polymer electrolyte membrane fuel cell performance using artificial neural networks. International Journal of Hydrogen Energy, 29(9):961–966. [doi:10.1016/j.ijhydene.2003.01.002]

    Article  Google Scholar 

  • Marr, C., Li, X.G., 1998. An engineering model of proton exchange membrane fuel cell performance. ASME Proceedings on Energy Sources Technology, 50(3):190–200.

    Google Scholar 

  • Mehta, V., Cooper, J.S., 2003. Review and analysis of PEM fuel cell design and manufacturing. Journal of Power Sources, 114(1):32–53. [doi:10.1016/S0378-7753(02)00542-6]

    Article  Google Scholar 

  • Ogaji, S.O.T., Singh, R., Pilidis, P., Diacakis, M., 2006. Modelling fuel cell performance using artificial intelligence. Journal of Power Sources, 154(1):192–197. [doi:10.1016/j.jpowsour.2005.03.226]

    Article  Google Scholar 

  • Ou, S.D., Achenie, L.E.K., 2005. A hybrid neural network model for PEM fuel cells. Journal of Power Sources, 140(2):319–330. [doi:10.1016/j.jpowsour.2004.08.047]

    Article  Google Scholar 

  • Pathapati, P.R., Xue, X., Tang, J., 2005. A new dynamic model for predicting transient phenomena in a PEM fuel cell system. Renewable Energy, 30(1):1–22. [doi:10.1016/j.renene.2004.05.001]

    Article  Google Scholar 

  • Pukrushpan, J.T., Peng, H., Stefanopoulou, A.G., 2005. Control-oriented Modeling and Analysis for Automotive Fuel Cell Systems. IFAC, Control Engineering Practice.

  • Shan, Y.Y., Choe, S.Y., 2005. A high dynamic PEM fuel cell model with temperature effects. Journal of Power Sources, 145(1):30–39. [doi:10.1016/j.jpowsour.2004.12.033]

    Article  Google Scholar 

  • Tian, Y.D., Zhu, X.J., Cao, G.Y., 2005. Proton exchange membrane fuel cells modeling based on artificial networks. Journal of University of Science and Technology Beijing, 12:72–77.

    Google Scholar 

  • Yuan, H.C., Xiong, F.L., Huai, X.Y., 2003. A method for estimating the number of hidden neurons in feed-forward neural networks based on information entropy. Computers and Electronics in Agriculture, 40(1–3):57–64. [doi:10.1016/S0168-1699(03)00011-5]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No. 2003AA517020) supported by the National Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Rm., Cao, Gy. & Zhu, Xj. New hybrid model of proton exchange membrane fuel cell. J. Zhejiang Univ. - Sci. A 8, 741–747 (2007). https://doi.org/10.1631/jzus.2007.A0741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0741

Key words

CLC number

Navigation