Skip to main content
Log in

On the hydrodynamic stability of a particle-laden flow in growing flat plate boundary layer

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The parabolized stability equation (PSE) was derived to study the linear stability of particle-laden flow in growing Blasius boundary layer. The stability characteristics for various Stokes numbers and particle concentrations were analyzed after solving the equation numerically using the perturbation method and finite difference. The inclusion of the nonparallel terms produces a reduction in the values of the critical Reynolds number compared with the parallel flow. There is a critical value for the effect of Stokes number, and the critical Stokes number being about unit, and the most efficient instability suppression takes place when Stokes number is of order 10. But the presence of the nonparallel terms does not affect the role of the particles in gas. That is, the addition of fine particles (Stokes number is much smaller than 1) reduces the critical Reynolds number while the addition of coarse particles (Stokes number is much larger than 1) enhances it. Qualitatively the effect of nonparallel mean flow is the same as that for the case of plane parallel flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alizard, F., Robinet, J.C., 2006. Two-dimensional Temporal Modes in Nonparallel Flows. Int. Conf. on Boundary and Interior Layers, Bail, Germany, 78:387–390.

    Google Scholar 

  • Asmolov, E.S., Manuilovich, S.V., 1998. Stability of a dusty-gas laminar boundary layer on a flat plate. J. Fluid Mech., 365:137–170. [doi:10.1017/S0022112098001256]

    Article  MathSciNet  MATH  Google Scholar 

  • Barry, M.D.J., Ross, M.A.S., 1970. The flat boundary layer. Part 2. The effect of increasing thickness on stability. J. Fluid Mech., 43(4):813–818. [doi:10.1017/S0022112070002768]

    Article  MATH  Google Scholar 

  • Bertolotti, F.P., Herbert, T., Spalart, P.R., 1992. Linear and nonlinear stability of the Blasius boundary layer. J. Fluid Mech., 242(1):441–471. [doi:10.1017/S0022112092002453]

    Article  MathSciNet  MATH  Google Scholar 

  • Bhaganagar, K., Rempfer, D., Lumley, J., 2002. Direct numerical simulation of spatial transition to turbulence using fourth order vertical velocity second order vertical vorticity formulation. J. Comput. Phys., 180(1):200–228. [doi:10.1006/jcph.2002.7088]

    Article  MathSciNet  MATH  Google Scholar 

  • Dimas, A.A., Kiger, K.T., 1998. Linear instability of a particle-laden mixing layer with a dynamic dispersed phase. Phys. Fluids, 10(10):2539–2557. [doi:10.1063/1.869769]

    Article  Google Scholar 

  • Ehrenstein, U., Gaillaire, F., 2005. On 2D temporal modes in spatially evolving open flows: the flat-plate boundary layer. J. Fluid Mech., 536:209–218. [doi:10.1017/S0022112005005112]

    Article  MathSciNet  MATH  Google Scholar 

  • Fasel, H., Konzelmann, U., 1990. Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. J. Fluid Mech., 221(1):311–347. [doi:10.1017/S0022112090003585]

    Article  MathSciNet  MATH  Google Scholar 

  • Gaster, M., 1974. On the effects of boundary-layer growth on flow stability. J. Fluid Mech., 66(3):465–480. [doi:10.1017/S0022112074000310]

    Article  MATH  Google Scholar 

  • Govindarajan, R., Narasimha, R., 1999. Low-order parabolic theory for 2D boundary-layer stability. Phys. Fluids, 11(6):1449–1458. [doi:10.1063/1.870008]

    Article  MathSciNet  MATH  Google Scholar 

  • Govindarajan, R., Narasimha, R., 2005. Accurate estimate of disturbance amplitude variation from solution of minimal composite stability theory. Theoretical and Computational Fluid Dynamics, 19(4):229–235. [doi:10.1007/s00162-005-0162-8]

    Article  MATH  Google Scholar 

  • Grosch, C.E., Orszag, S.A., 1977. Numerical solution of problems in unbounded regions: coordinate transforms. J. Comput. Phys., 25(3):273–296 [doi:10.1016/0021-9991(77)90102-4]

    Article  MathSciNet  MATH  Google Scholar 

  • Isakov, E.B., Rudnyak, Y.V., 1995. Stability of rarefied dusty gas and suspension flows in plane channel. Fluid Dynamics, 30(5):708–712. [doi:10.1007/BF02079390]

    Article  MATH  Google Scholar 

  • Jordinson, R., 1970. The flat plate boundary layer. Part 1. Numerical integration of the Orr-Sommerfeld equation. J. Fluid Mech., 43(4):801–811. [doi:10.1017/S0022112070002756]

    Article  MATH  Google Scholar 

  • Kurtz, E.F., Crandall, S.H., 1962. Computer-aided analysis of hydrodynamic stability. J. Math. Phys., 41:264–279.

    Article  MathSciNet  MATH  Google Scholar 

  • Lin, R.S., Malik, M.R., 1997. On the stability of attachment-line boundary layers. J. Fluid Mech., 333:125–137. [doi:10.1017/S0022112096004260]

    Article  MATH  Google Scholar 

  • Michael, D.H., 1965. Kelvin-Helmholtz instability of a dusty gas. Proc. Camb. Phil. Soc., 61:569–571.

    Article  MathSciNet  Google Scholar 

  • Rempfer, D., 2003. Low dimensional modeling and numerical simulation of transition in simple shear flows. Annu. Rev. Fluid Mech., 35(1):229–265. [doi:10.1146/annurev.fluid.35.030602.113908]

    Article  MathSciNet  MATH  Google Scholar 

  • Saffman, P.G., 1962. On the stability of laminar flow of dusty gas. J. Fluid Mech., 13(1):120–128. [doi:10.1017/S0022112062000555]

    Article  MathSciNet  MATH  Google Scholar 

  • Schlichting, H., 1954. Boundary Layer Theory. McGraw Hill Book Company, Inc., New York, p.431.

    Google Scholar 

  • Sproull, W.T., 1961. Viscosity of dusty gases. Nature, 190(4780):976–978. [doi:10.1038/190976a0]

    Article  Google Scholar 

  • Squires, K.D., Eaton, J.K., 1990. Particle response and turbulence modification in isotropic turbulence. Phys. Fluids A, 2(7):1191–1203. [doi:10.1063/1.857620]

    Article  Google Scholar 

  • Theofilis, V., 2003. Advances in global linear instability of nonparallel and three-dimensional flows. Prog. in Aerospace Sciences, 39(4):249–315. [doi:10.1016/S03760421(02)00030-1]

    Article  Google Scholar 

  • Tong, X.L., Wang, L.P., 1999. Two-way coupled particleladen mixing layer. Part 1: linear instability. Int. J. Multiphase Flow, 25(4):575–598. [doi:10.1016/S0301-9322(98)00059-7]

    Article  Google Scholar 

  • Torobin, L.B., Gauvin, W.H., 1961. Fundamental aspects of solids-gas flow, Part 6. Multi-particle behavior in turbulent fluids. Can. J. Chem. Engng., 39:113–120.

    Article  Google Scholar 

  • Wan, Z.H., Lin, J.Z., You, Z.J., 2005. Non-axisymmetric instability in the Taylor-Couette flow of fiber suspension. Journal of Zhejiang University SCIENCE, 6A(Suppl. I):1–7. [doi:10.1631/jzus.2005.AS0001]

    Article  MATH  Google Scholar 

  • Zebib, A., 1984. A Chebyshev method for the solution of boundary value problems. J. Comput. Phys., 53(3):443–455. [doi:10.1016/0021-9991(84)90070-6]

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundation of China (No. 10372090) and the Doctoral Program of Higher Education of China (No. 20030335001)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, Ml., Lin, Jz. & Xing, Ft. On the hydrodynamic stability of a particle-laden flow in growing flat plate boundary layer. J. Zhejiang Univ. - Sci. A 8, 275–284 (2007). https://doi.org/10.1631/jzus.2007.A0275

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0275

Key words

CLC number

Navigation