Skip to main content
Log in

Strength and deformation characteristics of steel fibrous concrete beams

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The results of an analytical investigation of the flexural behaviour of Steel Fibre Reinforced Concrete (SFRC) beams are presented. The complete response of the SFRC beams under displacement controlled static loading was obtained using nonlinear Finite Element (FE) techniques implemented with the help of ATENA 2D software. Issues relating to the behaviour of SFRC which have a direct bearing on the FE modelling are discussed with relevance to the software employed for the nonlinear analysis. Constitutive models amenable to numerical analysis for steel fibrous concrete are presented. The structural response throughout the loading regime was captured in terms of the load-deflection behaviour, which in addition to the post-peak response characterized the failure mode of the test beams. The crack patterns at crack initiation and at the end of the tests were also recorded. Experimental results from the specimens of two other investigators were used as control values for this investigation. The response of the specimens of this investigation was evaluated in terms of initial tangent stiffness, peak loads and toughness. Good match was obtained between the results from this investigation and corresponding experimentally obtained values, wherever available. The influence of the fibre content is reflected in the observed trends in peak loads, deflection at peak loads and toughness, which are in broad agreement with known behavioral patterns of SFRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Al-Tann, S.A., Ezzadeen, N.A., 1992. Non-Linear Finite Element Analysis of Steel Fibre Reinforced Members. In: Swamy, R.N. (Ed.), Fibre Reinforced Cement and Concrete. E & F N Spon, London, p.435–446.

    Google Scholar 

  • Bathe, K.J., 1996. Finite Element Procedures. Prentice-Hall of India Pvt. Ltd., New Delhi, p.1037.

    MATH  Google Scholar 

  • CEB-FIP Model Code, 1990. First Draft, Comite Euro-International du Beton, Bulletin d’information No. 195, 196, Mars.

  • Hordijk, D.A., 1991. Local Approach to Fatigue of Concrete. Ph.D. Thesis, Delft University of Technology, the Netherlands.

    Google Scholar 

  • Kupfer, H., Hilsdorf, H.K., Rusch, K., 1969. Behaviour of concrete under biaxial stress. Proceedings of ACI, 66(8):656–666.

    Google Scholar 

  • Lok, T., Pei, J., 1999. Flexural behaviour of steel fibre reinforced concrete. Journal of Materials in Civil Engineering, ASCE, 10(2):86–97. [doi:10.1061/(ASCE)0899-1561(1998)10:2(86)]

    Article  Google Scholar 

  • Mohammadi, Y., Kaushik, S.K., 2001. Steel Fibre Reinforced Concrete with Mixed Aspect Ratio. SEC-2001, Department of Civil Engineering, Phoenix Publishers, IIT Roorkee, p.326–334.

    Google Scholar 

  • Pillai, S.U., Menon, D., 1998. Reinforced Concrete Design. Tata McGrae-Hill Pub. Co. Ltd., New Delhi, p.762.

    Google Scholar 

  • Singh, S.P., Kaushik, S.K., 1999. Flexural Fatigue Behaviour of Steel Fibre Reinforced Concrete. CSIR Research Report, New Delhi, p.105.

  • van Mier, J.G.M., 1986. Multi-Axial Strain Softening of Concrete Part 1: Fracture. In: Materials and Structures. RILEM.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, B., Singh, S.P. & Kaushik, S.K. Strength and deformation characteristics of steel fibrous concrete beams. J. Zhejiang Univ. - Sci. A 8, 257–263 (2007). https://doi.org/10.1631/jzus.2007.A0257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2007.A0257

Key words

CLC number

Navigation