Skip to main content
Log in

Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The use of periosteum-derived progenitor cells (PCs) combined with bioresorbable materials is an attractive approach for tissue engineering. The aim of this study was to characterize the osteogenic differentiation of PC in 3-dimensional (3D) poly-lactic-co-glycolic acid (PLGA) fleeces cultured in medium containing allogeneic human serum. PCs were isolated and expanded in monolayer culture. Expanded cells of passage 3 were seeded into PLGA constructs and cultured in osteogenic medium for a maximum period of 28 d. Morphological, histological and cell viability analyses of three-dimensionally cultured PCs were performed to elucidate osseous synthesis and deposition of a calcified matrix. Furthermore, the mRNA expression of type I collagen, osteocalcin and osteonectin was semi-quantitively evaluated by real-time reverse transcriptase-polymerase chain reaction (RT-PCR). The fibrin gel immobilization technique provided homogeneous PCs distribution in 3D PLGA constructs. Live-dead staining indicated a high viability rate of PCs inside the PLGA scaffolds. Secreted nodules of neo-bone tissue formation and the presence of matrix mineralization were confirmed by positive von Kossa staining. The osteogenic differentiation of PCs was further demonstrated by the detection of type I collagen, osteocalcin and osteonectin gene expression. The results of this study support the concept that this tissue engineering method presents a promising method for creation of new bone in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnold, U., Lindenhayn, K., Perka, C., 2002. In vitro-cultivation of human periosteum derived cells in bioresorbable polymer-TCP-composites. Biomaterials, 23(11):2303–2310. [doi:10.1016/S0142-9612(01)00364-7]

    Article  PubMed  CAS  Google Scholar 

  • Barry, F.P., Murphy, J.M., 2004. Mesenchymal stem cells: clinical applications and biological characterization. Int. J. Biochem. Cell Biol., 36(4):568–584. [doi:10.1016/j.biocel.2003.11.001]

    Article  PubMed  CAS  Google Scholar 

  • Brittberg, M., Lindahl, A., Nilsson, A., Ohlsson, C., Isaksson, O., Peterson, L., 1994. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med., 331(14):889–895. [doi:10.1056/NEJM199410063311401]

    Article  PubMed  CAS  Google Scholar 

  • Chen, G., Sato, T., Ohgushi, H., Ushida, T., Tateishi, T., Tanaka, J., 2005. Culturing of skin fibroblasts in a thin PLGA-collagen hybrid mesh. Biomaterials, 26(15):2559–2566. [doi:10.1016/j.biomaterials.2004.07.034]

    Article  PubMed  CAS  Google Scholar 

  • Chenu, C., Colucci, S., Grano, M., Zigrino, P., Barattolo, R., Zambonin, G., Baldini, N., Vergnaud, P., Delmas, P.D., Zallone, A.Z., 1994. Osteocalcin induces chemotaxis, secretion of matrix proteins, and calcium-mediated intracellular signaling in human osteoclast-like cells. J. Cell Biol., 127(4):1149–1158. [doi:10.1083/jcb.127.4.1149]

    Article  PubMed  CAS  Google Scholar 

  • de Bari, C., Dell’Accio, F., Tylzanowski, P., Luyten, F.P., 2001. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum., 44(8):1928–1942. [doi:10.1002/1529-0131(200108)44:8〈1928::AID-ART331〉3.0.CO;2-P]

    Article  PubMed  Google Scholar 

  • Derubeis, A.R., Cancedda, R., 2004. Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances. Annals of Biomedical Engineering, 32(1):160–165. [doi:10.1023/B:ABME.0000007800.89194.95]

    Article  PubMed  Google Scholar 

  • Gröger, A., Klaring, S., Merten, H.A., Holste, J., Kaps, C., Sittinger, M., 2003. Tissue engineering of bone for mandibular augmentation in immunocompetent minipigs: preliminary study. Scand. J. Plast. Reconstr. Surg. Hand Surg., 37(3):129–133. [doi:10.1080/02844310310007728]

    Article  PubMed  Google Scholar 

  • Ignatius, A., Blessing, H., Liedert, A., Schmidt, C., Neidlinger-Wilke, C., Kaspar, D., Friemert, B., Claes, L., 2005. Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials, 26(3):311–318. [doi:10.1016/j.biomaterials.2004.02.045]

    Article  PubMed  CAS  Google Scholar 

  • Karp, J.M., Sarraf, F., Shoichet, M.S., Davies, J.E., 2004. Fibrin-filled scaffolds for bone-tissue engineering: an in vivo study. J. Biomed. Mater. Res. A, 71(1):162–171. [doi:10.1002/jbm.a.30147]

    Article  PubMed  CAS  Google Scholar 

  • Lennon, P.F., Collard, C.D., Morrissey, M.A., Stahl, G.L., 1996. Complement-induced endothelial dysfunction in rabbits: mechanisms, recovery, and gender differences. Am. J. Physiol., 270(6 Pt 2):H1924–H1932.

    PubMed  CAS  Google Scholar 

  • Muschler, G.F., Midura, R.J., 2002. Connective tissue progenitors: practical concepts for clinical applications. Clin. Orthop. Relat. Res., 395:66–80. [doi:10.1097/00003086-200202000-00008]

    Article  PubMed  Google Scholar 

  • Nöth, U., Osyczka, A.M., Tuli, R., Hickok, N.J., Danielson, K.G., Tuan, R.S., 2002. Multilineage mesenchymal differentiation potential of human trabecular bone-derived cells. J. Orthop. Res., 20(5):1060–1069. [doi:10.1016/S0736-0266(02)00018-9]

    Article  PubMed  Google Scholar 

  • Ouyang, H.W., Goh, J.C., Mo, X.M., Teoh, S.H., Lee, E.H., 2002. The efficacy of bone marrow stromal cell-seeded knitted PLGA fiber scaffold for Achilles tendon repair. Ann. N.Y. Acad. Sci., 961(1):126–129.

    Article  PubMed  CAS  Google Scholar 

  • Peng, H., Huard, J., 2004. Muscle-derived stem cells for musculoskeletal tissue regeneration and repair. Transpl. Immunol., 12(3–4):311–319. [doi:10.1016/j.trim.2003.12.009]

    Article  PubMed  CAS  Google Scholar 

  • Perka, C., Schultz, O., Spitzer, R.S., Lindenhayn, K., Burmester, G.R., Sittinger, M., 2000. Segmental bone repair by tissue-engineered periosteal cell transplants with bioresorbable fleece and fibrin scaffolds in rabbits. Biomaterials, 21(11):1145–1153. [doi:10.1016/S0142-9612(99)00280-X]

    Article  PubMed  CAS  Google Scholar 

  • Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411):143–147. [doi:10.1126/science.284.5411.143]

    Article  PubMed  CAS  Google Scholar 

  • Redlich, A., Perka, C., Schultz, O., Spitzer, R., Häupl, T., Burmester, G.R., Sittinger, M., 1999. Bone engineering on the basis of periosteal cells cultured in polymer fleeces. J. Mater. Sci. Mater. Med., 10(12):767–772. [doi:10.1023/A:1008994715605]

    Article  PubMed  CAS  Google Scholar 

  • Ringe, J., Kaps, C., Burmester, G.R., Sittinger, M., 2002. Stem cells for regenerative medicine: advances in the engineering of tissues and organs. Naturwissenschaften, 89(8):338–351. [doi:10.1007/s00114-002-0344-9]

    Article  PubMed  CAS  Google Scholar 

  • Ringe, J., Zheng, Y.X., Neumann, K., 2005. Surface marker expression, multilinage potential and chemotaxis of human mesenchymal stem cell and periosteal cells. The International Journal of Artificial Organ, 28(4):336.

    Google Scholar 

  • Schmelzeisen, R., Schimming, R., Sittinger, M., 2003. Making bone: implant insertion into tissue-engineered bone for maxillary sinus floor augmentation—a preliminary report. J. Craniomaxillofac. Surg., 31(1):34–39.

    PubMed  Google Scholar 

  • Sittinger, M., Reitzel, D., Dauner, M., Hierlemann, H., Hammer, C., Kastenbauer, E., Planck, H., Burmester, G.R., Bujia, J., 1996. Resorbable polyesters in cartilage engineering: affinity and biocompatibility of polymer fiber structures to chondrocytes. J. Biomed. Mater. Res., 33(2):57–63. [doi:10.1002/(SICI)1097-4636(199622)33:2〈57::AID-JBM1〉3.0.CO;2-K]

    Article  PubMed  CAS  Google Scholar 

  • Sittinger, M., Hutmacher, D.M., Risbud, M.V., 2004. Current strategies for cell delivery in cartilage and bone regeneration. Curr. Opin. Biotechnol., 15(5):411–418. [doi:10.1016/j.copbio.2004.08.010]

    Article  PubMed  CAS  Google Scholar 

  • Sommer, B., Bickel, M., Hofstetter, W., Wetterwald, A., 1996. Expression of matrix proteins during the development of mineralized tissues. Bone, 19(4):371–380. [doi:10.1016/S8756-3282(96)00218-9]

    Article  PubMed  CAS  Google Scholar 

  • Zuk, P.A., Zhu, M., Ashjian, P., de Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., Hedrick, M.H., 2002. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell, 13(12):4279–4295. [doi:10.1091/mbc.E02-02-0105]

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the Investitionsbank Berlin (IBB), Germany (No. 10020666) and the Science and Technology Bureau of Zhejiang Province, China (No. 991110052)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, Yx., Ringe, J., Liang, Z. et al. Osteogenic potential of human periosteum-derived progenitor cells in PLGA scaffold using allogeneic serum. J. Zhejiang Univ. - Sci. B 7, 817–824 (2006). https://doi.org/10.1631/jzus.2006.B0817

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.B0817

Key words

CLC number

Navigation