Skip to main content
Log in

Carvedilol protected diabetic rat hearts via reducing oxidative stress

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Oxidative stress plays a dominant role in the pathogenesis of diabetes mellitus. Bcl-2 gene has close connection with antioxidant stress destruction in many diseases including diabetes. Carvedilol, an adrenoceptor blocker, also has antioxidant properties. To study the effect of carvedilol on the antioxidant status in diabetic hearts, we investigated carvedilol-administrated healthy and streptozotocin-induced diabetic rats. After small and large dosage carvedilol-administered for 5 weeks, hemodynamic parameters, the levels of malondialdehyde, activities of antioxidant enzymes and expression of Bcl-2 mRNA in the cardiac tissues were measured. The diabetic rats not only had cardiac disfunction, weaker activities of antioxidant enzymes, but also showed lower expression of Bcl-2. Carvedilol treatment increased activities of antioxidant enzymes and expression of Bcl-2 in healthy rats as well as diabetic rats. These results indicated that carvedilol partly improves cardiac function via its antioxidant properties in diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Amstad, P.A., Liu, H., Ichimiya, M., Berezesky, I.K., Trump, B.F., Buhimschi, I.A., Gutierrez, P.L., 2001. BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep., 6(6):351–362. [doi:10.1179/135100001101536535]

    Article  PubMed  CAS  Google Scholar 

  • Beller, G.A., 2001. Coronary heart disease in the first 30 years of the 21st century: challenges and opportunities. The 33rd annual James B. Herrick lecture of the council on clinical cardiology of the American Heart Association. Circulation, 103(20):2428–2435.

    PubMed  CAS  Google Scholar 

  • Cai, L., Kang, Y.J., 2003. Cell death and diabetic cardiomyopathy. Cardiovasc. Toxicol., 3(3):219–228. [doi:10.1385/CT:3:3:219]

    Article  PubMed  CAS  Google Scholar 

  • Dandona, P., Karne, R., Ghanim, H., Hamouda, W., Aljada, A., Magsino, C.H.Jr, 2000. Carvedilol inhibits reactive oxygen species generation by leukocytes and oxidative damage to amino acids. Circulation, 101(2):122–124.

    PubMed  CAS  Google Scholar 

  • Giugliano, D., Acampora, R., Marfella, R., de Rosa, N., Ziccardi, P., Ragone, R., de Angelis, L., D’Onofrio, F., 1997. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin-dependent diabetes mellitus and hypertension. A randomized, controlled trial. Ann. Intern. Med., 126(12):955–959.

    PubMed  CAS  Google Scholar 

  • Hochman, A., Liang, H., Offen, D., Melamed, E., Sternin, H., 2000. Developmental changes in antioxidant enzymes and oxidative damage in kidneys, liver and brain of bcl-2 knockout mice. Cell Mol. Biol., 46(1):41–52.

    PubMed  CAS  Google Scholar 

  • Huang, H., Shang, J., Pan, X.H., Bao, X.F., Qian, L.B., Xia, Q., 2005. Carvedilol Protects Early Diabetic Rat Hearts through Reducing Oxidative Stress. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, p.339.

  • Jang, J.H., Surh, Y.J., 2003. Potentiation of cellular antioxidant capacity by Bcl-2: implications for its antiapoptotic function. Biochem. Pharmacol., 66(8):1371–1379. [doi:10.1016/S0006-2952(03)00487-8]

    Article  PubMed  CAS  Google Scholar 

  • Jung, C.H., Seog, H.M., Choi, I.W., Choi, H.D., Cho, H.Y., 2005. Effects of wild ginseng (Panax ginseng C.A. Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J. Ethnopharmacol., 98(3):245–250. [doi:10.1016/j.jep.2004.12.030]

    Article  PubMed  Google Scholar 

  • Nakamura, K., Kusano, K., Nakamura, Y., Kakishita, M., Ohta, K., Nagase, S., Yamamoto, M., Miyaji, K., Saito, H., Morita, H., et al., 2002. Carvedilol decreases elevated oxidative stress in human failing myocardium. Circulation, 105(24):2867–2871. [doi:10.1161/01.CIR.0000018605.14470.DD]

    Article  PubMed  CAS  Google Scholar 

  • Noguchi, N., Nishino, K., Niki, E., 2000. Antioxidant action of the antihypertensive drug, carvedilol, against lipid peroxidation. Biochem. Pharmacol., 59(9):1069–1076. [doi:10.1016/S0006-2952(99)00417-7]

    Article  PubMed  CAS  Google Scholar 

  • Pieper, G.M., Jordan, M., Dondlinger, L.A., Adams, M.B., Roza, A.M., 1995. Peroxidative stress in diabetic blood vessels. Reversal by pancreatic islet transplantation. Diabetes, 44(8):884–889.

    PubMed  CAS  Google Scholar 

  • Qin, F., Shite, J., Mao, W., Liang, C.S., 2003. Selegiline attenuates cardiac oxidative stress and apoptosis in heart failure: association with improvement of cardiac function. Eur. J. Pharmacol., 461(2–3):149–158. [doi:10.1016/S0014-2999(03)01306-2]

    Article  PubMed  CAS  Google Scholar 

  • Rosen, P., Rosen, R., Hohl, C., Reinauer, H., Klaus, W., 1984. Reduced transcoronary exchange and prostaglandin synthesis in diabetes rat heart. Am. J. Physiol., 247(4 Pt 2):H563–H569.

    PubMed  CAS  Google Scholar 

  • Shimizu, S., Eguchi, Y., Kosaka, H., Kamiike, W., Matsuda, H., Tsujimoto, Y., 1995. Prevention of hypoxia-induced cell death by Bcl-2 and Bcl-xL. Nature, 374(6525): 811–813. [doi:10.1038/374811a0]

    Article  PubMed  CAS  Google Scholar 

  • Slikker, W., Desai, V.G., Duhart, H., Feuers, R., Imam, S.Z., 2001. Hypothermia enhances bcl-2 expression and protects against oxidative stress-induced cell death in Chinese hamster ovary cells. Free Radic. Biol. Med., 31(3):405–411. [doi:10.1016/S0891-5849(01)00593-7]

    Article  PubMed  CAS  Google Scholar 

  • Spallarossa, P., Garibaldi, S., Altieri, P., Fabbi, P., Manca, V., Nasti, S., Rossettin, P., Ghigliotti, G., Ballestrero, A., Patrone, F., Barsotti, A., 2004. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J. Mol. Cell. Cardiol., 37(4):837–846. [doi:10.1016/j.yjmcc.2004.05.024]

    Article  PubMed  CAS  Google Scholar 

  • Tao, Z.W., Huang, Y.W., Xia, Q., Xu, Q.W., 2004. Early association of electrocardiogram alteration with infarct size and cardiac function after myocardial infarction. J. Zhejiang Univ. Sci., 5(4):494–498. [doi:10.1631/jzus.2004.0494]

    Article  PubMed  Google Scholar 

  • Vincent, A.M., Brownlee, M., Russell, J.W., 2002. Oxidative stress and programmed cell death in diabetic neuropathy. Ann. N Y Acad. Sci., 959(4):368–383.

    PubMed  CAS  Google Scholar 

  • Zeng, H., Liu, X., Zhao, H., 2003. Effects of carvedilol on cardiomyocyte apoptosis and gene expression in vivo after ischemia-reperfusion in rats. J. Huazhong Univ. Sci. Technol. Med. Sci., 23(2):127–130.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H., Shan, J., Pan, Xh. et al. Carvedilol protected diabetic rat hearts via reducing oxidative stress. J. Zhejiang Univ. - Sci. B 7, 725–731 (2006). https://doi.org/10.1631/jzus.2006.B0725

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.B0725

Key words

CLC number

Navigation