Skip to main content
Log in

Hg0 absorption in potassium persulfate solution

  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

The aqueous phase oxidation of gaseous elemental mercury (Hg0) by potassium persulfate (KPS) catalyzed by Ag+ was investigated using a glass bubble column reactor. Concentration of gaseous mercury and potassium persulfate were measured by cold vapor atom absorption (CVAA) and ion chromatograph (IC), respectively. The effects of pH value, concentration of potassium persulfate and silver nitrate (SN), temperature, Hg0 concentration in the reactor inlet and tertiary butanol (TBA), free radical scavenger, on the removal efficiency of Hg0 were studied. The results showed that the removal efficiency of Hg0 increased with increasing concentration of potassium persulfate and silver nitrate, while temperature and TBA were negatively effective. Furthermore, the removal efficiency of Hg0 was much better in neutral solution than in both acidic and alkaline solution. But the influence of pH was almost eliminated by adding AgNO3. High Hg0 concentration has positive effect. The possible reaction mechanism of gaseous mercury was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anipsitakis, G.P., Dionysiou, D.D., 2004. Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis B: Environmental, 54(3):155–163. [doi:10.1016/j.apcatb.2004.05.025]

    Article  CAS  Google Scholar 

  • Berlin, A.A., 1986. Kinetics of radical-chain decomposition of persulfate in aqueous solutions of organic compounds. Kinet. Catal., 27(1):34–39.

    Google Scholar 

  • Dogliotti, L., Hayon, E., 1967. Flash photolysis of persulfate ions in aqueous solutions. Study of the sulfate and ozonide radical anions. J. Phys. Chem., 71(8):2511–2516. [doi:10.1021/j100867a019]

    Article  CAS  Google Scholar 

  • Hayon, E., McGarvey, J.J., 1967. Flash photolysis in the vacuum ultraviolet region of SO2− 4, CO2− 3 and OH ions in aqueous solutions. J. Phys. Chem., 71(5):1472–1477. [doi:10.1021/j100864a044]

    Article  CAS  Google Scholar 

  • House, D.A., 1962. Kinetics and mechanism of oxidations by peroxydisulfate. Chem. Rev., 62(3):185–203. [doi:10.1021/cr60217a001]

    Article  CAS  Google Scholar 

  • Ivanov, K.L., Glebov, E.M., Plyusnin, V.F., Ivanov, Y.V., Grivin, V.P., Bazhin, N.M., 2000. Laser flash photolysis of sodium persulfate in aqueous solution with additions of dimethylformamide. Journal of Photochemistry and Photobiology A: Chemistry, 133(1–2):99–104. [doi:10.1016/S1010-6030(00)00218-5]

    Article  CAS  Google Scholar 

  • Kislenko, V.N., Berlin, A.A., Litovchenko, N.V., 1997. Kinetics of oxidation of glucose by persulfate ions in the presence of Mn(II) ions. Kinet. Catal., 38(3):391–396.

    Google Scholar 

  • Kolthoff, I.M., Miller, I.K., 1951. The chemistry of persulfate: I. The kinetics and mechanism of the decomposition of the persulfate ion in aqueous medium. J. Am. Chem. Soc., 73(7):3055–3059. [doi:10.1021/ja01151a024]

    Article  CAS  Google Scholar 

  • Langlais, B., Reckhow, D.A., Brink, D.R., 1991. Ozone in Water Treatment—Applications and Engineering. Lewis Publishers, Chelsea, p.16–19.

    Google Scholar 

  • Lenka, S., Dash, S.B., 1983. Polymerization of acrylonitrile initiated by potassium persulfate-cobalt(II) and potassium persulfate-manganese(II) redox system. J. Macromol. Sci. Chem. A, 20(3):397–407.

    Google Scholar 

  • Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004a. Persulfate oxidation for in situ remediation of TCE. I. Catalyzed by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere, 55(9):1213–1223. [doi:10.1016/j.chemosphere.2004.01.029]

    Article  PubMed  CAS  Google Scholar 

  • Liang, C.J., Bruell, C.J., Marley, M.C., Sperry, K.L., 2004b. Persulfate oxidation for in situ remediation of TCE. II. Catalyzed by chelated ferrous ion. Chemosphere, 55(9):1225–1233. [doi:10.1016/j.chemosphere.2004.01.030]

    Article  PubMed  CAS  Google Scholar 

  • Lipfert, F.W., Moskowitz, P.D., Ftherakis, V., Dephillips, M., Viren, J., Saroff, L., 1995. Assessment of adult risks of paresthesia due to mercury from coal combustion. Water, Air and Soil Pollution, 80(1–4):1139–1148. [doi:10.1007/BF01189776]

    Article  CAS  Google Scholar 

  • Morita, H., Mitsuhashi, T., Sakurai, H., Shimomura, S., 1983. Absorption of mercury by solutions containing oxidants. Analytica Chimica Acta, 153(1):351–355. [doi:10.1016/S0003-2670(00)85528-2]

    Article  CAS  Google Scholar 

  • Nosov, E.F., 1966. Rate constant determination in the decomposition of potassium and ammonium peroxydisulfate in aqueous solution. Russ. J. Phys. Chem., 40:1571–1572.

    Google Scholar 

  • Price, G.J., Clifton, A.A., 1996. Sonochemical acceleration of persulfate decomposition. Polymer, 37(17):3971–3973. [doi:10.1016/0032-3861(96)00197-8]

    Article  CAS  Google Scholar 

  • Skarzewski, J., 1984. Cerium catalyzed persulfate oxidation of polycyclic aromatic hydrocarbons to quinines. Tetrahedron, 40(23):4997–5000. [doi:10.1016/S0040-4020(01)91339-0]

    Article  CAS  Google Scholar 

  • Tanner, D.D., Osman, S.A.A., 1987. Oxidative decarbonation on the mechanism of potassium persulfate promoted decarbonation reaction. J. Org. Chem., 52(21):4689–4693. [doi:10.1021/jo00230a007]

    Article  CAS  Google Scholar 

  • US EPA, 1997. Mercury Study Report to Congress EPA-452/R-97-003. US EPA Office of Air Quality Planning and Standards, US Government Printing Office, Washington, DC.

    Google Scholar 

  • US EPA, 1998. A Study of Hazardous Air Pollutant Emissions from Electric Utility Steam Generating Units: Final Report to Congress, EPA-453/R-98-004a. US EPA Office of Air Quality Planning and Standards, US Government Printing Office, Washington, DC.

    Google Scholar 

  • van der Vaart, R., Akkerhuis, J., Feron, P., Jansen, B., 2001. Removal of mercury from gas streams by oxidative membrane gas absorption. Journal of Membrane Science, 187(1–2):151–157. [doi:10.1016/S0376-7388(01)00339-8]

    Article  Google Scholar 

  • Zhao, L.L., Rochelle, G.T., 1996. Hg absorption in aqueous permanganate. AIChE J., 42(12):3559–3562. [doi:10.1002/aic.690421227]

    Article  CAS  Google Scholar 

  • Zhao, L.L., Rochelle, G.T., 1998. Mercury absorption in aqueous oxidants catalyzed by mercury(II). Ind. Eng. Chem. Res., 37(2):380–387. [doi:10.1021/ie970155o]

    Article  CAS  Google Scholar 

  • Zhao, L.L., Rochelle, G.T., 1999. Mercury absorption in aqueous hypochlorite. Chem. Eng. Sci., 54(5):655–662. [doi:10.1016/S0009-2509(98)00263-2]

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No. 20476094) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, Qf., Wang, Cy., Wang, Dh. et al. Hg0 absorption in potassium persulfate solution. J. Zhejiang Univ. - Sci. B 7, 404–410 (2006). https://doi.org/10.1631/jzus.2006.B0404

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.B0404

Key words

CLC number

Navigation