Skip to main content
Log in

Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics

  • Review
  • Published:
Journal of Zhejiang University SCIENCE B Aims and scope Submit manuscript

Abstract

Increasing attention is being paid to the scientific evaluation of traditional Chinese medicine (TCM). As many TCMs are capable of biotransformation in the gastrointestinal tract, attention to biotransformation of TCM in the gastrointestinal tract may lead to discovery of the active components and active mechanisms. In this article, we review reports that host metabolic enzymes and intestinal bacteria may be responsible for the metabolism of TCM. Good understanding of the in vivo course of TCM will help us to know how to conduct metabolism evaluation of TCM by using in vitro human-derived system. This evaluation system will create new views on TCM as effective and safe therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdel-Hafez, A.A., Meselhy, M.R., Nakamura, N., Hattori, M., Watanabe, H., Mohamed, T.A., Mahfouz, N.M., el-Gendy, M.A., 1998. Potent anticonvulsant paeonimetabolin-I derivatives obtained by incubation of paeoniflorin and thiol compounds with Lactobacillus brevis. Chem. Pharm. Bull., 46:1486–1487.

    CAS  PubMed  Google Scholar 

  • Ansede, J.H., Thakker, D.R., 2004. High-throughput screening for stability and inhibitory activity of compounds toward cytochrome P450-mediated metabolism. J. Pharm. Sci., 93(2):239–255. [doi:10.1002/jps.10545]

    Article  CAS  PubMed  Google Scholar 

  • Barone, G.W., Gurley, B.J., Ketel, B.L., Lightfoot, M.L., Abul-Ezz, S.R., 2000. Drug interaction between St. John’s Wort and cyclosporin. Ann. Pharmacother., 34(9):1013–1016. [doi:10.1345/aph.10088]

    CAS  PubMed  Google Scholar 

  • Chauret, N., Gauthier, A., Martin, J., Nicoll-Griffith, D.A., 1997. In vitro comparison of cytochrome P450-mediated metabolic activities in human, dog, cat, and horse. Drug Metab. Dispos., 25:1130–1136.

    CAS  PubMed  Google Scholar 

  • Crespi, C.L., Miller, V.P., 1999. The use of heterologously expressed drug metabolizing enzymes-state of the art and prospects for the future. Pharmacol. Ther., 84(2):121–131. [doi:10.1016/S0163-7258(99)00028-5]

    Article  CAS  PubMed  Google Scholar 

  • deSmet, P.A., 2002. Herbal remedies. New Engl. J. Med., 347(25):2046–2056. [doi:10.1056/NEJMra020398]

    Google Scholar 

  • Delaforge, M., 1998. Importance of metabolism in pharmacological studies: possible in vitro predictability. Nucl. Med. Biol., 25(8):705–709. [doi:10.1016/S0969-8051(98)00063-8]

    CAS  PubMed  Google Scholar 

  • Dreessen, M., Eyssen, H., Lemli, J., 1981. The metabolism of sennosides A and B by the intestinal microflora: in vitro and vivo studies on the rat and the mouse. J. Pharm. Pharmacol., 33:679–681.

    CAS  PubMed  Google Scholar 

  • Eddershaw, P.J., Beresford, A.P., Bayliss, M.K., 2000. ADME/PK as part of a rational approach to drug discovery. Drug Discov. Today, 5(9):409–414. [doi:10.1016/S1359-6446(00)01540-3]

    Article  CAS  PubMed  Google Scholar 

  • Ferrini, J.B., Pichard, L., Domergue, J., Maurel, P., 1997. Long-term primary cultures of adult human hepatocytes. Chemico-Biological Interactions, 107(1-2):31–45. [doi:10.1016/S0009-2797(97)00072-0]

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, F.P., 1989. The molecular biology of cytochrome P450s. Pharmacol. Rev., 40:243–288.

    Google Scholar 

  • Gunaratna, C., 2000. Drug metabolism and pharmacokinetics in drug discovery: a primer for bioanalytical chemists, part I. Curr. Sep., 19:17–23.

    CAS  Google Scholar 

  • Hasegawa, H., 2004. Proof of the mysterious efficacy of ginseng: basic and clinical trials: metabolic activation of ginsenoside: deglycosylation by intestinal bacteria and esterification with fatty acid. J. Pharmacol. Sci., 95(2):153–157. [doi:10.1254/jphs.FMJ04001X4]

    Article  CAS  PubMed  Google Scholar 

  • Holtbecker, N., Fromm, M.F., Kroemer, H.K., Ohnhms, E.F., Heidermann, H., 1996. The nifedipine-rifampin interaction: evidence for induction of gut wall metabolism. Drug Metab. Dispos., 24:1121–1123.

    CAS  PubMed  Google Scholar 

  • Holzapfel, W.H., Haberer, P., Snel, J., Schillinger, U., Huis in’t Veld, J.H., 1998. Overview of gut flora and probiotics. Int. J. Food Microbiol., 41(2):85–101. [doi:10.1016/S0168-1605(98)00044-0]

    Article  CAS  PubMed  Google Scholar 

  • Hooper, L.V., Wong, M.H., Thelin, A., Hansson, L., Falk, P.G., Gordon, J.I., 2001. Molecular analysis of commensal host-microbial relationships in the intestine (cites personal communication from Joshua Lederberg). Science, 291(5505):881–884. [doi:10.1126/science.291.5505.881]

    Article  CAS  PubMed  Google Scholar 

  • Ingelman-Sundberg, M., 2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci., 25(4):193–200. [doi:10.1016/j.tips.2004.02.007]

    Article  CAS  PubMed  Google Scholar 

  • Iyer, K.R., Sinz, M.W., 1999. Characterization of Phase I and Phase II hepatic drug metabolism activities in a panel of human liver preparations. Chemico-Biological Interactions, 118(2):151–169. [doi:10.1016/S0009-2797(99)00007-1]

    Article  CAS  PubMed  Google Scholar 

  • Kaminsky, L.S., Zhang, Q.Y., 2003. The small intestine as a xenobiotic-metabolizing organ. Drug Metab. Dispos., 31(12):1520–1525. [doi:10.1124/dmd.31.12.1520]

    Article  CAS  PubMed  Google Scholar 

  • Kedderis, G.L., 1997. Pharmacokinetics of drug interactions. Adv. Pharmacol., 43:189–203.

    CAS  PubMed  Google Scholar 

  • Kennedy, T., 1997. Managing the drug discovery/development interface. Drug Discov. Today, 2(10):436–444. [doi:10.1016/S1359-6446(97)01099-4]

    Article  Google Scholar 

  • Kim, D.H., Jung, E.A., Sohng, I.S., Han, J.A., Kim, T.H., Han, M.J., 1998. Intestinal bacterial metabolism of flavonoids and its relation to some biological activities. Arch. Pharm. Res., 21:17–23.

    CAS  PubMed  Google Scholar 

  • Ko, R.J., 2004. A U.S. perspective on the adverse reactions from traditional Chinese medicines. J. Chin. Med. Assoc., 67:109–116.

    PubMed  Google Scholar 

  • Kobashi, K., Akao, T., 1997. Relation of intestinal bacteria to pharmacological effects of glycosides. Bifidobacteria Microflora, 16:1–7.

    CAS  Google Scholar 

  • Kobashi, K., Akao, T., Hattori, M., Namba, T., 1992. Metabolism of drugs by intestinal bacteria. Bifidobacteria Microflora, 11:9–23.

    Google Scholar 

  • Kola, I., Landis, J., 2004. Can the pharmaceutical industry reduce attrition rates? Nat. Rev. Drug Discov., 3(8):711–715. [doi:10.1038/nrd1470]

    Article  CAS  PubMed  Google Scholar 

  • Lasker, J.M., Wester, M.R., Aramsombatdee, E., Raucy, J.L., 1998. Characterization of CYP2C19 and CYP2C9 from human liver: respective roles in microsomal tolbutamide, S-mephenytoin, and omeprazole hydroxylations. Arch. Biochem. Biophys., 353(1):16–28. [doi:10.1006/abbi.1998.0615]

    Article  CAS  PubMed  Google Scholar 

  • Lin, J.H., Lu, A.Y.H., 1998. Inhibition and induction of cytochrome P450 and the clinical implications. Clin. Pharmacokinet., 5:361–390.

    Google Scholar 

  • Liu, Y., Li, W., Li, P., Deng, M.C., Yang, S.L., Yang, L., 2004. The inhibitory effect of intestinal bacterial metabolite of ginsenosides on CYP3A activity. Biol. Pharm. Bull., 27(10):1555–1560. [doi:10.1248/bpb.27.1555]

    Article  CAS  PubMed  Google Scholar 

  • Mackie, R., Sghir, A., Gaskins, H.R., 1999. Developmental microbial ecology of the neonatal gastrointestinal tract. Am. J. Clin. Nutr., 69:1035S–1045S.

    CAS  PubMed  Google Scholar 

  • Margolis, J.M., Obach, R.S., 2003. Impact of nonspecific binding to microsomes and phospholipid on the inhibition of cytochrome P4502D6: implications for relating in vitro inhibition data to in vivo drug interactions. Drug Metab. Dispos., 31(5):606–611. [doi:10.1124/dmd.31.5.606]

    Article  CAS  PubMed  Google Scholar 

  • Masimirembwa, C.M., Thompson, R., Andersson, T.B., 2001. In vitro high throughput screening of compounds for favorable metabolic properties in drug discovery. Comb. Chem. High Throughput Screen, 4:245–263.

    CAS  PubMed  Google Scholar 

  • Nicholson, J.K., Holmes, E., Wilson, I.D., 2005. Gut micro-organisms, mammalian metabolism and personalized health care. Nat. Rev. Microbiol., 3(5):431–438. [doi:10.1038/nrmicro1152]

    Article  CAS  PubMed  Google Scholar 

  • Obach, R.S., Zhang, Q.Y., Dunbar, D., Kaminsky, L.S., 2001. Metabolic characterization of the major human small intestinal cytochrome P450s. Drug Metab. Dispos., 29:347–352.

    CAS  PubMed  Google Scholar 

  • Paine, M.F., Shen, D.D., Kunze, K.L., Perkins, J.D., Marsh, C.L., McVicar, J.P., Barr, D.M., Gillies, B.S., Thummel, K.E., 1996. First-pass metabolism of midazolam by the human intestine. Clin. Pharmacol. Ther., 60(1):14–24. [doi:10.1016/S0009-9236(96)90162-9]

    Article  CAS  PubMed  Google Scholar 

  • Piscitelli, S.C., Burstein, A.H., Chaitt, D., Alfaro, R.M., Falloon, J., 2000. Indinavir concentrations and St. John’s Wort. The Lancet, 355(9203):547–548. [doi:10.1016/S0140-6736(99)05712-8]

    Article  CAS  Google Scholar 

  • Prentis, R.A., Lis, Y., Walker, S.R., 1988. Pharmaceutical innovation by the seven UK-owned pharmaceutical companies (1964∼1985). Br. J. Clin. Pharmacol., 25:387–396.

    CAS  PubMed  Google Scholar 

  • Rodrigues, A.D., Wong, S.L., 1997. Application of human liver microsomes in metabolism-based drug-drug interactions. Adv. Pharmacol., 43:65–101.

    CAS  PubMed  Google Scholar 

  • Rosenblatt, M., Mindel, J., 1997. Spontaneous hyphema associated with ingestion of Ginkgo biloba extract. New Engl. J. Med., 336(15):1108. [doi:10.1056/NEJM199704103361518]

    Article  CAS  PubMed  Google Scholar 

  • Schaeffeler, E., Schwab, M., Eichelbaum, M., Zanger, U.M., 2003. CYP2D6 genotyping strategy based on gene copy number determination by TaqMan real-time PCR. Human Mutation, 22(6):476–485. [doi:10.1002/humu.10280]

    Article  CAS  PubMed  Google Scholar 

  • Shimada, T., Yamazaki, H., Mimura, M., Inui, Y., Guengerich, F.P., 1994. Interindividual variations in human liver cytochrome P-450 enzymes involved in the oxidation of drugs, carcinogens and toxic chemicals: studies with liver microsomes of 30 Japanese and 30 Caucasians. J. Pharmacol. Exp. Ther., 270:414–423.

    CAS  PubMed  Google Scholar 

  • Shu, Y.Z., Hattori, M., Akao, T., Kobashi, K., Kagei, K., Fukuyama, K., Tsukihara, T., Namba, T., 1987. Metabolism of paeoniflorin and related compounds by human intestinal bacteria. II. Structures of 7S-and 7R-paeonimetabolines I and II formed by Bacteroides fragilis and Lactobacillus brevis. Chem. Pharm. Bull., 35:3726–3733.

    CAS  PubMed  Google Scholar 

  • Siow, Y.L., Gong, Y., Au-Yeung, K.K., Woo, C.W., Choy, P.C., O,K., 2005. Emerging issues in traditional Chinese medicine. Can. J. Physiol. Pharmacol., 83(4):321–334. [doi:10.1139/y05-029]

    Article  CAS  PubMed  Google Scholar 

  • Sunter, W.H., 1991. Warfarin and garlic. Pharm. J., 246:722.

    Google Scholar 

  • Wrighton, S.A., Stevens, J.C., 1992. The human hepatic cytochromes P450 involved in drug metabolism. Crit. Rev. Toxicol., 22:1–21.

    CAS  PubMed  Google Scholar 

  • Yan, Z., Caldwell, G.W., 2001. Metabolism profiling, and cytochrome P450 inhibition and induction in drug discovery. Curr. Top. Med. Chem., 1(5):403–425. [doi:10.2174/1568026013395001]

    Article  CAS  PubMed  Google Scholar 

  • Yang, L., Akao, T., Kobashi, K., Hattori, M., 1996. Purification and characterization of a novel sennoside-hydro lyzing beta-glucosidase from Bifidobacterium sp. strain SEN, a human intestinal anaerobe. Biol. Pharm. Bull., 19:705–709.

    CAS  PubMed  Google Scholar 

  • Yim, J.S., Kim, Y.S., Moon, S.K., Cho, K.H., Bae, H.S., Kim, J.J., Park, E.K., Kim, D.H., 2004. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol. Pharm. Bull., 27(10):1580–1583. [doi:10.1248/bpb.27.1580]

    Article  CAS  PubMed  Google Scholar 

  • Yue, Q.Y., Bergquist, C., Gerden, B., 2000. Safety of St. John’s Wort (Hypericum perforatum). The Lancet, 355(9203):576–577. [doi:10.1016/S0140-6736(05)73227-X]

    Article  CAS  Google Scholar 

  • Zhang, Q.Y., Dunbar, D., Ostrowska, A., Zeisloft, S., Yang, J., Kaminsky, L.S., 1999. Characterization of human small intestinal cytochromes P-450. Drug Metab. Dispos., 27:804–809.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ling  (杨凌).

Additional information

Project supported by the National Basic Research Program (973) of China (Nos. 2003CCA03400 and 2003CB716005), and the Leading Program of the Chinese Academy of Sciences (No. KGCXZ-SW-213-04), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, Y., Yang, L. Early metabolism evaluation making traditional Chinese medicine effective and safe therapeutics. J. Zhejiang Univ. - Sci. B 7, 99–106 (2006). https://doi.org/10.1631/jzus.2006.B0099

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.B0099

Key words

Navigation