Skip to main content
Log in

Antiviral activity in the mulberry silkworm, Bombyx mori L.

  • Review
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The silkworm Bombyx mori is exploited both as a powerful biological model system and also as a tool to convert leaf protein into silk. Silkworm larvae often suffer from viral infections causing heavy losses to the economy of the silk industry. Insects exhibit both humoral and cellular immune responses that are effective against various pathogens like bacteria, fungi, protozoa, etc., but no insect immune response is effective against viral infections. To date, no satisfactory reports are available on antiviral immunity of the silkworm. Some efforts have been made by very few workers to identify and characterize the antiviral proteins in the silkworm. In the present article the mode of viral infection, and the activity of certain antiviral proteins involved in silkworm immunity and also in some other insects are discussed. The investigation will be helpful in understanding the molecular aspects of antiviral immunity, disease control and may form the basis for potential use of silkworm in other fields such as medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa, K., 1962. Antiviral substance in the gut-juice of the silkworm. J. Insect Pathol., 4:72–76.

    Google Scholar 

  • Asano, T., Ashida, M., 2001. Cuticular pro-phenoloxidase of the silkworm: purification and characterization of its transport from hemolymph. J. Biol. Chem., 276(14):11113–11115. [doi:10.1074/jbc.M008425200]

    Article  Google Scholar 

  • Ashida, M., Brey, P.T., 1997. Molecular Mechanisms of Immune Responses in Insects. Chapman & Hall, London, p.135–172.

    Google Scholar 

  • Bulet, P., Hetru, C., Dimarq, J.L., Hoffmann, D., 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol., 23(4–5):329–344. [doi:10.1016/S0145-305X(99)00015-4]

    Article  Google Scholar 

  • Chernysh, S., Kim, S.I., Bekker, G., Pleskach, V.A., Filatova, N.A., Anikin, V.B., Platonov, V.G., Bulet, P., 2002. Antiviral and antitumour peptides from insects. PNAS, 99(20):12628–12632. [doi:10.1073/pnas.192301899]

    Article  Google Scholar 

  • Clem, R.J., Fechheimer, M., Miller, L.K., 1991. Prevention of apoptosis by baculovirus gene during infection of insect cells. Science, 254(5036):1388–1390.

    Article  Google Scholar 

  • Clemens, M.J., Elia, A., 1997. The double stranded RNA-dependent protein kinase PKR: structure and function. J. Inter. Cytokine. Res., 17(9):503–524.

    Article  Google Scholar 

  • de Gregorio, E., Han, S.J., Lee, W.J., Baek, M.J., Osaki, T., Kawabata, S., Lee, B.L., Iwanaga, S., Lemaitre, B., Brey, P.T., 2002. An immune-responsive serpin regulates the melanization cascade in Drosophila. Dev. Cell, 3(4):581–592. [doi:10.1016/S1534-5807(02)00267-8]

    Article  Google Scholar 

  • Engelhard, E.K., Volkman, L.E., 1995. Developmental resistance in forth instar Trichoplusia ni orally inoculated with Autographa californica M nuclear polyhedraosis virus. Virol., 209(2):384–389. [doi:10.1006/viro.1995.1270]

    Article  Google Scholar 

  • Engelhard, E.K., Kam-Morgan, L.N., Washburn, J.Q., Volkman, L.E., 1994. The insect tracheal system, a conduit for the systemic spread of Autographa californica M nuclear polyhedraosis virus. PNAS, 91(8):3224–3227. [doi:10.1073/pnas.91.8.3224]

    Article  Google Scholar 

  • Funakoshi, M., Aizawa, K., 1989. Antiviral substance in the silkworm gut juice against a nuclear polyhedrosis virus of the silkworm. J. Invertebr. Pathol., 54(2):151–155. [doi:10.1016/0022-2011(89)90024-4]

    Article  Google Scholar 

  • Gorman, M.J., Paskewitz, S.M., 2001. Serine proteases as mediators of mosquito immune responses. Insect. Biol. Mol. Biol., 31(3):257–262. [doi:10.1016/S0965-1748(00)00145-4]

    Article  Google Scholar 

  • Granados, R.R., Lawler, K.A., 1981. In-vivo pathway of AcNPV invasion and infection. Virol., 108(2):297–308. [doi:10.1016/0042-6822(81)90438-4]

    Article  Google Scholar 

  • Hayashiya, K., Nishida, J., 1968. Inactivation of nuclear polyhedrosis virus in the digestive of larvae reared on natural and artificial diets. J. Appl. Entomol. Zool., 12:189–193 (in Japanese).

    Article  Google Scholar 

  • Hayashiya, K., Matsubara, F., 1971. Comparative experiments with the silkworm larvae reared on mulberry leaves and artificial diets: comparison of antiviral activities in the digestive juice of larvae reared on natural and artificial diets. Bull Fac. Text. Sci., 6:87–100.

    Google Scholar 

  • Hayashiya, K., Nishida, J., 1976. The mechanism of formation of the red fluorescent protein in the digestive juice of silkworm larvae—the formation of chlorophyllidae-a. J. Appl. Entomol. Zool., 20:37–43 (in Japanese).

    Article  Google Scholar 

  • Hirai, M., Terenius, O., Faye, I., 2004. Baculovirus and dsRNA induce Hemolin, but no antibacterial activity in Antheraea pernyi. Insect Molecular Biology, 13(4):399–405. [doi:10.1111/j.0962-1075.2004.00497.x]

    Article  Google Scholar 

  • Hiraki, A., Hirayama, E., Kim, J., 2000. Antiviral substance from silkworm faeces: characterization of its antiviral activity. Microbiol. Immunol., 44(8):669–676.

    Article  Google Scholar 

  • Hoffmann, J.A., 2003. The immune response in Drosophila. Nature, 426(6962):33–38. [doi:10.1038/nature02021]

    Article  Google Scholar 

  • Hoffmann, J.A., Kafatos, F.C., Janeway, C.A., Ezekowitz, R.A., 1999. Phylogenetic perspectives in innate immunity. Science, 284(5418):1313–1318. [doi:10.1126/science.284.5418.1313]

    Article  Google Scholar 

  • Hortan, H.M., Burand, J.P., 1993. Saturable attachment sites for polyhedron derived baculovirus on insect cells and evidence for entry through direct membrane fusion. J. Virol., 67:1860–1868.

    Google Scholar 

  • Janeway, C.A., 1989. Approaching the asymptote? Evolution and revolution in immunology. Quant. Biology, 54(1):1–13.

    Article  Google Scholar 

  • Jayaprakash, R.M., Rachappa, K.D., 2000. Virus activating protein RFP. Indian Silk, 4:11–12.

    Google Scholar 

  • Kanost, M.R., Zhao, L., 1996. Insect hemolymph proteins from the immunoglobulin superfamily. Adv. Comp. Environ. Physiol., 23:185–197.

    Article  Google Scholar 

  • Lavine, M.D., Strand, M.R., 2002. Insect hemocytes and their role in immunity. Insec. Biochem. Mol. Biol., 32(10):1295–1309. [doi:10.1016/S0965-1748(02)00092-9]

    Article  Google Scholar 

  • Lee, K.Y., Horodyski, F.M., Valaitis, A.P., Denlinger, D.L., 2002. Molecular characterization of the insect immune protein hemolin and its high induction during embryonic diapause in the gypsy moth. Lymantria Dispar. Insect Bio. Mol. Biol., 32(11):1457–1467. [doi:10.1016/S0965-1748(02)00066-8]

    Article  Google Scholar 

  • Lehane, M.J., 1997. Peritrophic matrix structure and function. Annu. Rev. Entomol., 42(1):525–550. [doi:10.1146/annurev.ento.42.1.525]

    Article  Google Scholar 

  • Lehane, M.J., Wu, D., Lehane, S.M., 1997. Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans. PNAS, 94(21):11502–11507. [doi:10.1073/pnas.94.21.11502]

    Article  Google Scholar 

  • Lehane, M.J., Aksoy, S., Levashina, E., 2004. Immune responses and parasite transmission in blood-feeding insects. Trends in Parasitology, 20(9):433–439. [doi:10.1016/j.pt.2004.07.002]

    Article  Google Scholar 

  • Levashina, E.A., Moita, L.F., Blandin, S., Vriend, G., Lagueux, M., Kafatos, F.C., 2001. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell, 104(5):709–718. [doi:10.1016/S0092-8674(01)00267-7]

    Article  Google Scholar 

  • Ligoxygakis, P., Pelte, N., Ji, C., Leclerc, V., Duvic, B., Belvin, M., Jiang, H., Hoffmann, J.A., Reichhart, J.M., 2002. A serpin mutant links toll activation to melanization in the host defence of Drosophila. EMBO J., 21(23):6330–6337. [doi:10.1093/emboj/cdf661]

    Article  Google Scholar 

  • Lim, D.S., Ko, S.H., Kim, S.J., Park, Y.J., Park, J.H., Lee, W.Y., 2002. Photoinactivation of vesicular stomatitis virus by a photodynamic agent, chlorophyll derivatives from silkworm excreta. J. Photochem. Photobiol. B., 67(3):149–156. [doi:10.1016/S1011-1344(02)00318-4]

    Article  Google Scholar 

  • Maeda, S., 1989. Expression of foreign genes in insects using baculovirus vectors. Annu. Rev. Entomol., 34(1):351–372. [doi:10.1146/annurev.en.34.010189.002031]

    Article  Google Scholar 

  • Martignoni, M.E., Iwai, P.J., 1986. A Catalogue of Viral Diseases of Insects, Mites and Ticks. In: General Technical Report PNW-195, 4th Ed. United States Northwest Research Station, Portland.

    Google Scholar 

  • Meister, M., Lagueux, M., 2003. Drosophila blood cells. Cell. Microbiol., 5(9):573–580. [doi:10.1046/j.1462-5822.2003.00302.x]

    Article  Google Scholar 

  • Monsma, S.A., Oomens, A.G., Blissard, G.W., 1996. The GP64 envelope fusion protein is as essential baculovirus protein required for cell-to-cell transmission of infection. J. Virol., 70(7):4607–4616.

    Google Scholar 

  • Nakazawa, H., Tsuneishi, E., Ponnuvel, K.M., Furukawa, S., Asaoka, A., Tanaka, H., Ishibashi, J., Yamakawa, M., 2004. Antiviral activity of a serine protease from the digestive juice of B. mori larvae against NPV. Virol., 321(1):154–162. [doi:10.1016/j.virol.2003.12.011]

    Article  Google Scholar 

  • Narayan, K., 2004. Insect resistance: its impact on microbial control of insect pests. Current Science, 86(6):800–814.

    Google Scholar 

  • Ourth, D.D., 2004. Antiviral activity against human immunodeficiency virus-1 in vitro by myristoylated-peptide from Heliothis virescens. Biochem. Biophys. Res. Commu., 320(1):190–196. [doi:10.1016/j.bbrc.2004.05.137]

    Article  Google Scholar 

  • Ponnuvel, K.M., Nakazawa, H., Furukawa, S., Asaoka, A., Ishibashi, J., Tanaka, H., Yamakawa, M., 2003. A Lipase isolated from the silkworm shows antiviral activity against NPV. J. Virol., 77(19):10725–10729. [doi:10.1128/JVI.77.19.10725-10729.2003]

    Article  Google Scholar 

  • Popham, H.J.R., Shelby, K.S., Brandt, S.L., Coudron, T.A., 2004. Potent virucidal activity in larval Heliothis virescens plasma against Helicoverpa zea single capsid nucleopolyhedrovirus. J. Gen. Virol., 85:2255–2261. [doi:10.1099/vir.0.79965-0]

    Article  Google Scholar 

  • Prudhomme, J.C., Couble, P., 2002. Perspectives in silkworm transgenesis. Current Science, 83(4):432–438.

    Google Scholar 

  • Roxstrom-Lindquist, K., Lindstrom-Dinnetz, I., Olesen, J., Engstrom, Y., Faye, I., 2002. An intron enhancer activates the immunoglobulin-related Hemolin gene in Hyalophora cecropia. Insec. Mol. Biol., 11(5):505–515. [doi:10.1046/j.1365-2583.2002.00359.x]

    Article  Google Scholar 

  • Tamura, T., Thibert, C., Royer, C., Kanda, T., Abraham, E., Kamba, M., Komoto, N., Thomas, J.L., Mauchamp, B., Chavancy, G., et al., 2000. Germline transformation of the silkworm using a piggyback transposon-derived vector. Nat. Biotechnol., 18(1):81–84. [doi:10.1038/71978]

    Article  Google Scholar 

  • Terenius, O., 2004. Anti-Parasitic and Anti-Viral Immune Responses in Insects. Ph.D. Thesis, Department of Genetics, Microbiology and Toxicology, Stockholm University, Stockholm, Sweden.

    Google Scholar 

  • Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J.M., Lemaitre, B., Hoffmann, J.A., Imler, J.L., 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 13(5):737–748. [doi:10.1016/S1074-7613(00)00072-8]

    Article  Google Scholar 

  • Vernick, K.D., Fujioka, H., Seeley, D.C., Tandler, B., Aikawa, M., Miller, L.H., 1995. Plasmodium gallinaceum—A refractory mechanism of ookinete killing in the mosquito, Anopheles gambiae. Exp. Parasitol., 80(4):583–595. [doi:10.1006/expr.1995.1074]

    Article  Google Scholar 

  • Washburn, J.O., Kirkpatrick, B.A., Volkman, L.E., 1995. Comparative pathogenesis of AcMNPV in larvae of Trichoplusia ni and Heliothis virucens. Virol., 209(2):561–568. [doi:10.1006/viro.1995.1288]

    Article  Google Scholar 

  • Wyllie, A.H., Kerr, J.F.R., Currie, A.R., 1980. Cell death: the significance of apoptosis. Int. Rev. Cytol., 68:251–306.

    Article  Google Scholar 

  • Yu, X.Q., Kansot, M.R., 1999. Developmental expression of Manduca sexta hemolin. Arch. Insec. Biochem. Physiol., 42(3):198–212. [doi:10.1002/(SICI)1520-6327(199911)42:3〈198::AID-ARCH4〉3.0.CO;2-G]

    Article  Google Scholar 

  • Yu, X.Q., Zhu, Y.F., Ma, C., Fabrick, J.A., Kanost, M.R., 2002. Pattern recognition proteins in Manduca sexta plasma. Insec. Biochem. Mol. Biol., 32(10):1287–1293. [doi:10.1016/S0965-1748(02)00091-7]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Xiao-feng.

Additional information

Project supported by the National Basic Research Program (973) of China (No. 2005CB121003), and the Natural Science Foundation of Zhejiang Province (No. Y305050), China

The two authors contribute equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, Hp., Wu, Xf. & Gokulamma, K. Antiviral activity in the mulberry silkworm, Bombyx mori L.. J. Zhejiang Univ. - Sci. A 7 (Suppl 2), 350–356 (2006). https://doi.org/10.1631/jzus.2006.AS0350

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.AS0350

Key words

CLC number

Navigation