Skip to main content
Log in

Coaxial liquid-liquid flows in tubes with limited length

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Coaxial liquid-liquid flows were numerically studied in a nesting two-tube system. Calculations were carried out when various exit-lengths (meaning length differences between the two tubes) were used. Numerical results indicated that there exists a certain range of exit-length for the liquid-liquid flows to form stable and smooth interfaces, which requires that the exit-length should roughly be less than 5.6 times the outer tube diameter. In this range, interface instability is effectively restrained and the core fluid shows a phenomenon of die swell. When the exit-length is about 1.6 times the outer tube diameter, the core fluid has the greatest diameter size in the shell fluid. Velocity distributions at the outer tube exit favor formation of a continuous and stable core-shell structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arney, M.S., Ribeiro, G.S., Guevara, E., Bai, R., Joseph, D.D., 1996. Cement-lined pipes for water lubricated transport of heavy oil. International Journal of Liquid-liquid Flow, 22(2):207–221.

    Article  MATH  Google Scholar 

  • Bai, R., Chen, K., Joseph, D.D., 1992. Lubricated pipelining: stability of core-annular flow. Part 5. Experiments and comparison with theory. J. Fluid Mech., 240:97–132.

    Article  Google Scholar 

  • Drzain, P.G., Reid, W.H., 1981. Hydrodynamic Stability. Cambridge University Press.

  • Feng, J., Huang, P.Y., Joseph, D.D., 1995. Dynamic simulation of the motion of capsules. J. Fluid Mech., 286:201–227.

    Article  MathSciNet  MATH  Google Scholar 

  • FLUENT6.0, 2003. User Guide Documentation, Computational Fluid Dynamics Software. New Hampshire, Lebanon.

  • Hertz, C.H., Hermanrud, B., 1983. A liquid compound jet. J. Fluid Mech., 131:187–271.

    Article  Google Scholar 

  • Huang, Z., Zhang, Y., Kotaki, M., Ramakrishna, S., 2003. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15):2223–2253. [doi:10.1016/S0266-3538(03)00178-7]

    Article  Google Scholar 

  • Joseph, D.D., 1990. Fluid Dynamics of Viscoelastic Liquids. Springer-Verlag New York Inc.

  • Joseph, D.D., 1997. Lubricated pipelining. Powder Technology, 94(3):211–215. [doi:10.1016/S0032-5910(97)03296-8]

    Article  MATH  Google Scholar 

  • Loscertales, I.G., Barrero, A., Marquez, M., Spretz, R., Velarde-Ortiz, R., Larsen, G., 2004. Electrically forced coaxial nanojets for one-step hollow nanofiber design. J. AM. CHEM. SOC., 126(17):5376–5377. [doi:10.1021/ja049443j]

    Article  Google Scholar 

  • Reneker, D.H., Yarin, A.L., Fong, H., Koombhongse, S., 2000. Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9):4531–4547. [doi:10.1063/1.373532]

    Article  Google Scholar 

  • Reznik, S.N., Yarin, A.L., Theron, A., Zussman, E., 2004. Transient and steady shapes of droplets attached to a surface in a strong electric field. J. Fluid Mech., 516:349–377. [doi:10.1017/S0022112004000679]

    Article  MATH  Google Scholar 

  • Rutledge, G.C., Shin, M.Y., Warner, S.B., Buer, B., Grimler, M., Ugbolue, S.C., 2001. A Fundamental Investigation of the Formation and Properties of Electrospun Fibers. National Textile Center Annual Report, M98-D01.

  • Scardovelli, R., Zaleski, S., 1999. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31(1):567–603. [doi:10.1146/annurev.fluid.31.1.567]

    Article  MathSciNet  Google Scholar 

  • Sun, Z., Zussman, E., Yarin, A.L., Wendorff, J.H., Greiner, A., 2003. Compound core-shell polymer nanofibers by co-electrospinning. Advanced Materials, 15(22):1929–1932. [doi:10.1002/adma.200305136]

    Article  Google Scholar 

  • Theron, S.A., Zussman, E., Yarin, A.L., 2004. Experimental investigation of the governing parameters in the electrospinning of polymer solutions. Polymer, 45(6):2017–2030. [doi:10.1016/j.polymer.2004.01.024]

    Article  Google Scholar 

  • Yarin, A.L., 2003. Lecture Notes 5: Electrospinning of Nanofibers from Polymer Solutions and Melts. Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland.

    Google Scholar 

  • Yarin, A.L., Koombhongse, S., Reneker, D.H., 2001. Bending instability in electrospinning of nanofibers. Journal of Applied Physics, 89(5):3018–3026. [doi:10.1063/1.1333035]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project supported by the National Natural Science Foundations of China (No. 10402031) and the NanoSci Tech Promotion Center, the Shanghai Science & Tech. Committee (No. 0352nm091), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Yy., Huang, Zm. Coaxial liquid-liquid flows in tubes with limited length. J. Zhejiang Univ. - Sci. A 7, 347–351 (2006). https://doi.org/10.1631/jzus.2006.A0347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A0347

Key words

Navigation