Skip to main content
Log in

Jacquard image segmentation using Mumford-Shah model

  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Jacquard image segmentation is one of the primary steps in image analysis for jacquard pattern identification. The main aim is to recognize homogeneous regions within a jacquard image as distinct, which belongs to different patterns. Active contour models have become popular for finding the contours of a pattern with a complex shape. However, the performance of active contour models is often inadequate under noisy environment. In this paper, a robust algorithm based on the Mumford-Shah model is proposed for the segmentation of noisy jacquard images. First, the Mumford-Shah model is discretized on piecewise linear finite element spaces to yield greater stability. Then, an iterative relaxation algorithm for numerically solving the discrete version of the model is presented. In this algorithm, an adaptive triangular mesh is refined to generate Delaunay type triangular mesh defined on structured triangulations, and then a quasi-Newton numerical method is applied to find the absolute minimum of the discrete model. Experimental results on noisy jacquard images demonstrated the efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosio, L., Tortorelli, V.M., 1990. Approximation of functionals depending on jumps by elliptic functionals via Gamma-convergence. Comm. Pure Appl. Math., 43:999–1036.

    Article  MathSciNet  MATH  Google Scholar 

  • Borouchaki, H., Laug, P., 1996. The BL2D Mesh Generator: Beginner’s Guide, User’s and Programmer’s Manual. Technical Report RT-0194, INRIA.

  • Chambolle, A., 1995. Image segmentation by variational methods: Mumford and Shah functional and the discrete approximations. SIAM J. Appl. Math., 55(3):827–863. [doi:10.1137/S0036139993257132]

    Article  MathSciNet  MATH  Google Scholar 

  • Chen, X.F., Guan, Z.C., 2004. Image segmentation based on Mumford-Shah functional. Journal of Zhejiang University SCIENCE, 5(1):123–128. [doi:10.1631/jzus.2004.0123]

    Article  MATH  Google Scholar 

  • Chesnaud, C., Refregier, P., Boulet, V., 1999. Statistical region snake-based segmentation adapted to different physical noise models. IEEE Trans. Pattern Analysis and Machine Intelligence, 21(11):1145–1157. [doi:10.1109/34.809108]

    Article  Google Scholar 

  • dalMaso, G., 1993. An Introduction to Γ-Convergence. Birkhäuse, Boston.

    Book  Google Scholar 

  • deGiorgi, E., Carriero, M., Leaci, A., 1990. Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal., 111(4):291–322. [doi:10.1007/BF00376024]

    Article  MathSciNet  MATH  Google Scholar 

  • George, P.L., Borouchaki, H., 1998. Delaunay Triangulation and Meshing: Application to Finite Elements. Hermes, Paris.

    MATH  Google Scholar 

  • Gobbino, M., 1998. Finite difference approximation of the Mumford-Shah functional. Comm. Pure Appl. Math., 51(2):197–228. [doi:10.1002/(SICI)1097-0312(199802)51:2〈197::AID-CPA3〉3.0.CO;2-6]

    Article  MathSciNet  MATH  Google Scholar 

  • Kass, M., Witkin, A., Terzopoulos, D., 1988. Snakes: Active contour models. Int. J. Computer Vis., 1(4):321–331. [doi:10.1007/BF00133570]

    Article  MATH  Google Scholar 

  • Malladi, R., Sethian, J.A., Vemuri, B.C., 1995. Shape modeling with front propagation: A level set approach. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(2):158–175. [doi:10.1109/34.368173]

    Article  Google Scholar 

  • Martin, P., Goudail, F., Refregier, P., Guerault, F., 2004. Influence of the noise model on level set active contour segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence, 26(6):799–803. [doi:10.1109/TPAMI.2004.11]

    Article  Google Scholar 

  • Mumford, D., Shah, J., 1989. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42(5):577–685.

    Article  MathSciNet  MATH  Google Scholar 

  • Negri, M., 1999. The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah Functional. Numer. Funct. Anal. Optim., 20:957–982.

    Article  MathSciNet  MATH  Google Scholar 

  • Tsai, A., Yezzi, A.Jr., Willsky, A.S., 2001. Curve evolution implementation of the Mumford-Shah Functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Processing, 10(8):1169–1186. [doi:10.1109/83.935033]

    Article  MATH  Google Scholar 

  • Xiao, H., Xu, C.Y., Prince, J.L., 2003. A topology preserving level set method for geometric deformable models. IEEE Trans. Pattern Analysis and Machine Intelligence, 25(6):755–768. [doi:10.1109/TPAMI.2003.1201824]

    Article  Google Scholar 

  • Zhuang, X.H., Huang, Y., Palaniappan, K., Zhao, Y.X., 1996. Gaussian mixture density modeling, decomposition, and applications. IEEE Trans. Image Processing, 5(9):1293–1302. [doi:10.1109/83.535841]

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No. 2003AA411021) supported by the Hi-Tech Research and Development Program (863) of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Zl., Yin, Jw., Chen, G. et al. Jacquard image segmentation using Mumford-Shah model. J. Zhejiang Univ. - Sci. A 7, 109–116 (2006). https://doi.org/10.1631/jzus.2006.A0109

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2006.A0109

Key words

Navigation