Skip to main content
Log in

Electrode models in electrical impedance tomography

  • China-UK. Workshop on Process Tomography, April 15–22, 2005, Beijing and Hangzhou, P.R.China
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper presents different views on electrode modelling, which include electrode electrochemistry models for modelling the effects of electrode-electrolyte interface, electric field electrode models for modelling electrode geometry, and electrode models for modelling the effects of electrode common mode voltage and double layer capacitance. Taking the full electrode models into consideration in electrical impedance tomography (EIT) will greatly help the optimised approach to a good solution and further understanding of the measurement principle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baber, D.C., Brown, B.H., 1984. Applied potential tomography.J. Phys. E: Sci. Instrum.,17:723–733.

    Article  Google Scholar 

  • Bockris, J.O.M., Conway, B.E., 1969. Modern Aspects of Electrochemistry. Plenum Press, New York.

    Google Scholar 

  • Bockris, J.O.M., Reddy, A.K.N., 1970. Modern Electrochemistry. Macdonald, London.

    Book  Google Scholar 

  • Bockris, J.O.M., Drazic, D.M., 1972. Electro-chemical Science. Taylor and Frabcis Ltd.

  • Brown, B.H., Seagar, A.D., 1985. Applied Potential Tomography: Data Collection Problems. Proc. IEE Int. Conf. on Electric and Magnetic Field in Medic. and Biolo., p. 79–82.

  • Cheng, K., Isaacson, D., Newell, J.C., Gisser, D.C., 1989. Electrode models for electric current computed tomography.IEEE Trans. Biom. Engng.,36(9):918–924.

    Article  Google Scholar 

  • Cobbold, R.S.C., 1974. Transducers for Biomedical Measurements: Principles and Applications. John Wiley & Sons.

  • Conway, B.E., 1952. Electrochemistrical Data. Elsevier Publishing Company.

  • Crow, D.R., 1974. Principles and Applications of Electrochemistry. Chapman and Hall, London.

    Book  Google Scholar 

  • Geddes, L.A., Costa, C.P.D., Wise, G., 1971. The impedance of stainless-steel electrodes.Med. & Biol. Engng.,9:511–521.

    Article  Google Scholar 

  • Hua, P., Woo, E.J., Webster, J.G., Tompkins, W.J., 1993. Using compound electrodes in electrical impedance tomography.IEEE Trans. Biomed. Eng.,40(1):29–34.

    Article  Google Scholar 

  • Ider, Y.Z., Gencer, N.G., Altlar, E., Tosun, H., 1990. Electrical impedance tomography of translationally uniform cylidrical objects with general cross-sectional boundary.IEEE Trans. on Med. Imag.,9(1):49–59.

    Article  Google Scholar 

  • Kraus, J.D., 1953. Electromagnetics. Book Company, Inc.

  • Ma, Y., Wang, M., 2004. Performance of a High-speed Impedance Camera for Flow Informatics. Proceedings of EDSA04, ASME, Manchester.

  • Murphy, D., Rolfe, P., 1988. Aspects of instrumentation design for impedance imaging.Clin. Phys. Physiol. Meas.,9(A):5–14.

    Article  Google Scholar 

  • Murai, T., Kagawa, Y., 1985. Electrical impedance computed tomography based on a finite element model.IEEE Trans. Biomed Eng.,BME-32(3):177–184.

    Article  Google Scholar 

  • Myers, D.F., Saville, D.A., 1989. Dielectric spectroscopy of colloidal suspensions.J. Colloid and Interface Science,131(2):448–460.

    Article  Google Scholar 

  • Pidcock, M.K., 1994. Analysing the Importance of Electrode modelling in Electrical Impedance Tomography.In: Beck, M.S., Campogrande, E., Morris, M., Williams, R.A., Waterfall, R.C. (Eds.), Process Tomography—A Strategy for Industrial Exploitation. UMIST, Manchester, UK, p. 285–290.

    Google Scholar 

  • Pollak, V., 1974a. An equivalent diagram for the interface impedance of metal needle electrodes.Med. and Biolo. Engng.,July:454–459.

    Article  Google Scholar 

  • Pollak, V., 1974b. Computation of the impedance characteristic of metal electrodes for biological investigations.Med. and Biolo. Engng.,July:460–464.

    Article  Google Scholar 

  • Schwan, H.P., Ferris, C.D., 1968. Four-electrode null techniques for impedance measurement with high resolution.The Review of Scientific Instruments,39(4):481–485.

    Article  Google Scholar 

  • Vauhkonen, P.J., Vauhkonen, M., Savolainen, T., Kaipio, P., 1999. Three-dimensional electrical impedance tomography based on the complete electrode model.IEEE Trans. Biomed. Eng.,46(9):1150–1160.

    Article  Google Scholar 

  • Wang, M., 1994. Electrical Impedance Tomographyn Conducting Walled Process Vessels. Ph.D Thesis, UMIST.

  • Wang, M., Ma, Y.X. 2005. Over Zero Switching Scheme for Fast Data Collection Operation in Electrical Impedance Tomography. Proceedings of 4th World Congress on Industrial Process Tomography, Ajzu, Japan.

  • Wang, M., Dickin, F.J., Beck, M.S., 1993. Improved Electrical Impedance Tomography Data Collection System and Measurement Protocols.In: Beck, M.S., Campogrande, E., Morris, M., Williams, R.A., Waterfall, R.C. (Eds.), Tomography Technique and Process Design and Operation. Computational Mechanics Publications, Manchester, p. 75–88.

    Google Scholar 

  • Wang, M., Dickin, F.J., Williams, R.A., 1994. Electrical resistance tomography of metal walled vessels and pipelines.Electronics Letters,30(10):771–773.

    Article  Google Scholar 

  • Wang, M., Dickin, F.J., Williams, R.A., 1995a. Modelling and analysis of electrically conducting vessels and pipelines in electrical resistance process tomography.IEE Proc. Sci. Meas. Technol.,142(4):313–322.

    Article  Google Scholar 

  • Wang, M., Dickin, F.J., Williams, R.A., 1995b. The grouped node technique as a means of handling large electrode surfaces in electrical impedance tomography.Physiol. Meas.,16:219–226.

    Article  Google Scholar 

  • Wang, M., Mann, R., Dickin, F.J., 1999. Electrical resistance tomographic sensing systems for industrial applications.Chem. Eng. Comm.,175:49–70.

    Article  Google Scholar 

  • Wang, M., Ma, Y., Holliday, N., Dai, Y., Williams, R.A., Lucas, G., 2005. A high performance EIT system.IEEE Sensors Journal,5(2):289–299.

    Article  Google Scholar 

  • Weinman, J., Mahler, J., 1964. An analysis of electrical properties of metal electrodes.Med. Electron. Biod. Engng.,2:299–310.

    Article  Google Scholar 

  • Yorkey, T.J., Webster, J.G., Tompkins, W.J., 1985. Errors Caused by Contact Impedance in Impedance Imaging. Proc. IEEE/Seventh Ann. Conf. Eng. Med. Biol. Soc., p.632–637.

  • Yorkey, T.J., Webster, J.G., Tompkins, W.J., 1987. Comparing reconstruction algorithm for electrical impedance tomography.IEEE Trans. Biomed. Eng., Nov.,BME-34(11):843–851.

    Article  Google Scholar 

  • Zhou, P., 1993. Numerical Analysis of Electriomagnetic Fields. Springer-Verlag, Berlin, Heidelberg.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang M..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M. Electrode models in electrical impedance tomography. J. Zhejiang Univ. Sci. A 6, 1386–1393 (2005). https://doi.org/10.1631/jzus.2005.A1386

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2005.A1386

Key words

Document code

CLC number

Navigation