Skip to main content
Log in

Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations

  • Biotechnology
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

The salt-gradient operation mode used in ion-exchange simulated moving bed chromatography (SMBC) can improve the efficiency of protein separations. A detailed model that takes into account any kind of adsorption/ion-exchange equilibrium, salt gradient, size exclusion, mass transfer resistance, and port periodic switching mechanism, was developed to simulate the complex dynamics. The model predictions were verified by the experimental data on upward and downward gradients for protein separations reported in the literature. All design and operating parameters (number, configuration, length and diameter of columns, particle size, switching period, flow rates of feed, raffinate, desorbent and extract, protein concentrations in feed, different salt concentrations in desorbent and feed) can be chosen correctly by numerical simulation. This model can facilitate the design, operation, optimization, control and scale-up of salt-gradient ion-exchange SMBC for protein separations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel, S., Mazzotti, M., Morbidelli, M., 2004. Solvent gradient operation of simulated moving beds 2. Langmuir isotherms. J. Chromatography A, 1026:47–55.

    Article  Google Scholar 

  • Finlayson, B.A., 1980. Non-linear Analysis in Chemical Engineering. McGraw-Hill, New York.

    Google Scholar 

  • Gao, Y.G., Guan, Y.X., Yao, S.J., Cho, M.G., 2003. Lysozyme refolding at high concentration by dilution and size-exclusion chromatography. J. Zhejiang University SCIENCE, 4(2):136–141.

    Article  Google Scholar 

  • Gu, T., 1995. Mathematical Modeling and Scale-up of Liquid Chromatography. Springer, Berlin.

    Book  Google Scholar 

  • Gu, T., Tsai, G.J., Tsao, G.T., 1990. New approach to a general nonlinear multicomponent chromatography model. AIChE J., 36:784–788.

    Article  Google Scholar 

  • Helfferich, F.G., 1983. Ion-exchange Kinetics-Evolution of A Theory. In: Liberti, L., Helfferich, F.G. (Eds.), Mass Transfer and Kinetics of Ion-exchange (NATO ASI Series E: Applied Science, No. 71). Martinus Nijhoff, The Hague, p. 162.

    Google Scholar 

  • Houwing, J., Billiet, H.A.H., van der Wielen, L.A.M., 2002a. Optimization of azeotropic protein separations in gradient and isocratic ion-exchange simulated moving bed chromatography. J. Chromatography A, 944:189–201.

    Article  Google Scholar 

  • Houwing, J., van Hateren, S.H., Billiet, H.A.H., van der Wielen, L.A.M., 2002b. Effect of salt gradients on the separation of dilute mixtures of proteins by ion-exchange in simulated moving beds. J. Chromatography A, 952:85–98.

    Article  Google Scholar 

  • Houwing, J., Jensen, T.B., van Hateren, S.H., Billiet, H.A.H., van der Wielen, L.A.M., 2003a. Positioning of salt gradients in ion-exchange SMB. AIChE J., 49:665–674.

    Article  Google Scholar 

  • Houwing, J., Billiet, H.A.H., van der Wielen, L.A.M., 2003b. Mass-transfer effects during separation of proteins in SMB by size exclusion. AIChE J., 49:1158–1167.

    Article  Google Scholar 

  • Hritzko, B.J., Xie, Y., Wooley, R.J., Wang, N.H.L., 2002. Standing-wave design of tandem SMB for linear multicomponent systems. AIChE J., 48:2769–2787.

    Article  Google Scholar 

  • Kaczmarski, K., Mazzotti, M., Storti, G., Morbidelli, M., 1997. Modeling fixed-bed adsorption columns through orthogonal collocations on moving finite elements. Comput. Chem. Eng., 21:641–660.

    Article  Google Scholar 

  • Lu, J.G., 1995. Preparative Ion-Exchange Chromatography of Amino Acids. Ph. D. Thesis, Chem. Eng. Dept., Zhejiang Univ., Hangzhou (in Chinese).

    Google Scholar 

  • Lu, J.G., 2003. A non-linear non-ideal model of simulated moving bed chromatography for chiral separations. Chinese J. Chem. Eng., 11:234–239.

    Google Scholar 

  • Lu, J.G., Wu, P.D., 1997. Dynamics of preparative ion-exchange chromatography of amino acids. J. Chem. Eng. Chinese Univ., 11:163–165 (in Chinese).

    Google Scholar 

  • Migliorini, C., Mazzotti, M., Zenoni, G., Morbidelli, M., 2002. Shortcut experimental method for designing chiral SMB separations. AIChE J., 48:69–77.

    Article  Google Scholar 

  • Minceva, M., Pais, L.S., Rodrigues, A.E., 2003. Cyclic steady state of simulated moving bed processes for enantiomers separation. Chem. Eng. Proc., 42:93–104.

    Article  Google Scholar 

  • Pais, L.S., Rodrigues, A.E., 2003. Design of simulated moving bed and Varicol processes for preparative separations with a low number of columns. J. Chromatography A, 1006:33–44.

    Article  Google Scholar 

  • Silva, E.A.B., Souza, A.A.U., Souza, S.M.A.G.U., 2002. The use of simulated moving bed in chromatographic separations: Study of the SMB configuration. Sep. Sci. Technol., 37:1489–1504.

    Article  Google Scholar 

  • Yamamoto, S., Nakanishi, K., Matsuno, R., 1988. Ion-Exchange Chromatography of Proteins. Marcel-Dekker, New York and Basel.

    Google Scholar 

  • Yu, H.W., Ching, C.B., 2002. Optimization of a simulated moving bed based on an approximated Langmuir model. AIChE J., 48:2240–2246.

    Article  Google Scholar 

  • Yu, Q., Wang, N.H.L., 1989. Computer simulations of multicomponent ion exchange and adsorption in fixed beds-Gradient-directed moving finite element method. Comput. Chem. Eng., 13:915–926.

    Article  Google Scholar 

  • Zhang, Z.Y., Hidajat, K., Ray, A.K., Morbidelli, M., 2002. Multiobjective optimization of SMB and varicol process for chiral separation. AIChE J., 48:2800–2816.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Jian-gang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 20206027), the National Basic Research Program (973) of China (No. 2002CB312200), and the Natural Science Foundation of Zhejiang Province (No. 202046), China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lu, Jg. Mathematical modeling of salt-gradient ion-exchange simulated moving bed chromatography for protein separations. J. Zheijang Univ.-Sci. 5, 1613–1620 (2004). https://doi.org/10.1631/jzus.2004.1613

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2004.1613

Key words

CLC number

Navigation