Skip to main content
Log in

Effects of pH management during deep hypothermic bypass on cerebral oxygenation: alpha-stat versus pH-stat

  • Biomedical Science
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Objective: There is a remarkable lack of scientific evidence to support the option to use alpha-stat or pH-stat management, as to which is more beneficial to brain protection during deep hypothermic CPB. This study examined cortical blood flow (CBF), cerebral oxygenation, and brain oxygen consumption in relation to deep hypothermic CPB with alpha-stat or pH-stat management. Methods: Twenty-two pigs were cooled with alpha-stat or pH-stat during CPB to 15°C esophageal temperature. CBF and cerebral oxygenation were measured continuously with a laser flowmeter and near-infrared spectroscopy, respectively. Brain oxygen consumption was measured with standard laboratory techniques. Results: During CPB cooling, CBF was significantly decreased, about 52,2%±6.3% (P<0.01 vs 92.6%±6.5% of pH-stat) at 15°C in alpha-stat, whereas there were no significant changes in CBF in pH-stat. While cooling down, brain oxygen extraction (OER) progressively decreased, about 9.5%±0.9% and 10.9%±1.5% at 15°C in alpha-stat and pH-stat, respectively. At 31°C the decreased value in pH-stat was lower than in alpha-stat (29.9%±2.7% vs 22.5%±1.9%;P<0.05). The ratio of CBF/OER were 2.0±0.3 in alpha-stat and pH-stat, respectively; it was kept in constant level in alpha-stat, and significantly increased by 19 °C to 15°C in pH-stat (4.9±0.9 vs 2.3±0.4; P<0.01). In mild hypothermia, cerebral oxyhemoglobin and oxygen saturation in alpha-stat were greater than that in pH-stat (102.5±1.4% vs 99.1%±0.7%; P<0.05). In deep hypothermia, brain oxygen saturation in pH-stat was greater than that in alpha-stat (99.2%±1.0% vs 93.8%±1.0%; P<0.01), and deoxyhemoglobin in pH-stat decreased more greatly than that in alpha-stat (28.7%±6.8% vs 54.1%±4.7%; P<0.05). Conclusions: In mild hypothermic CPB, brain tissue oxygen saturation was greater in alpha-stat than in pH-stat. However, cerebral oxygenation and brain tissue oxygen saturation were better in pH-stat than in alpha-stat during profound hypothermia. PH-stat strategy provided much more oxygen to brain tissue before deep hypothermic circulatory arrest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chan, S., Li, P., 1990. Cytochrome c oxidase: understanding nature’s design of a proton pump. Biochemistry, 29:1–12.

    Article  Google Scholar 

  • Civalero, L.A., Moreno, J.R., Senning, A., 1962. Temperature conditions and oxygen consumption during deep hypothermia. Acta Chir Scand, 123:179–88.

    Google Scholar 

  • Dexter, F., Kern, F.H., Hindman, B.J., Greeley, W.J., 1997. The brain uses mostly dissolved oxygen during profoundly hypothermic cardiopulmonary bypass. Ann Thorac Surg, 63:1725–1729.

    Article  Google Scholar 

  • du Plessis, A.J., Jonas, R.A., Wypij, D., Hickey, P.R., 1997. Perioperative effects of alpha-stat versus pH-stat strategies for deep hypothermic cardiopulmonary bypass in infants. J Thorac Cardiovasc Surg, 114:991–1000.

    Article  Google Scholar 

  • Gardner, T.J., Horneffer, P.J., Manolio, T.A., Pearson, T.A., Gott, V.L., Baungartner, W.A., Borkon, A.M., Watkins, I. Jr. Reitx, B.A., 1985. Stroke following coronary artery bypas grafting: a ten-year study. Ann Thorac Surg, 40:574–581.

    Article  Google Scholar 

  • Kadoi, Y., Kawahara, F., Saito, S., Morta, T., Kunimoto, F., Goto, F., Fujita, N., 1999. Effects of hypothermic and normothermic cardiopulmonary bypass on brain oxy genation. Ann Thorac Surg, 68:34–39.

    Article  Google Scholar 

  • Lassnigg, A., Hiesmayr, M., Keznickl, P., Mullner, T., Ehrlich, M., Grubhofer, G., 1999. Cerebral oxygenation during cardiopulmonary bypass measured by near-infrared spectroscopy: Effects of hemodilution, temperature, and flow. J Cardiothorac Vasc Anesth, 13:544–548.

    Article  Google Scholar 

  • Mora, C.T., Henson, M.B., Weintraub, W.S., Murkin, J.M., Martin, T.D., Craver, J.M., Gott, J.P., Guyton, R.A., 1996. The effect of temperature management during cardiopulmonary bypass on neurologic and neuropsychological outcomes in patients undergoing coronary revascularization. J Thorac Cardiovac Surg, 112: 514–522.

    Article  Google Scholar 

  • Priestley, M.A., Golden, J.A., O’Hara, I.B., McCann, J., Kurth, C.D., 2001. Comparison of neurologic outcome after deep hypothermic circulatory arrest with alpha stat and pH stat cardiopulmonary bypass in newborn pigs. J Thorac Cardiovasc Surg, 121:336–43.

    Article  Google Scholar 

  • Schell, R.M., Kern, F.H., Greeley, W.J., Schulman S.R., Frasco, P.E., Croughwell, N.D., Newman, M., Reves, J.G., 1993. Cerebral blood flow and metabolism during cardiopulmonary bypass. Anesth Analg, 76:849–65.

    Article  Google Scholar 

  • Undar, A., Eichstaedt, H.C., Fraxier, O.H., Fraser, C.D. Jr., 2000. Monitoring regional cerebral oxygen saturation using near-infrared spectroscopy during pulsatile hypothermic cardiopulmonary bypass in a neonatal piglet model. ASAIO J, 46:103–106.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Zj., Yin, Xm. & Ye, J. Effects of pH management during deep hypothermic bypass on cerebral oxygenation: alpha-stat versus pH-stat. J. Zheijang Univ.-Sci. 5, 1290–1297 (2004). https://doi.org/10.1631/jzus.2004.1290

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2004.1290

Key words

Document code

CLC number

Navigation