Skip to main content
Log in

Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae

  • Life Science & Biotechnology
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

Cells and cell-free solutions of the culture filtrate of the bacterial symbiont, Xenorhabdus nematophila taken from the entomopathogenic nematode Steinernema carpocapsae in aqueous broth suspensions were lethal to larvae of the diamondback moth Plutella xylostella. Their application on leaves of Chinese cabbage indicated that the cells can penetrate into the insects in the absence of the nematode vector. Cell-free solutions containing metabolites were also proved as effective as bacterial cells suspension. The application of aqueous suspensions of cells of X. nematophila or solutions containing its toxic metabolites to the leaves represents a possible new strategy for controlling insect pests on foliage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akhurst, R.J., Boemare, N.E., 1990. Biology and Taxonomy of Xenorhabdus. In: Gaugler, R., Kaya, H.K. (Eds.), Entomopathogenic Nematodes in Biological Control. C.R.C. Press, Boca Raton, Florida p.75–90.

    Google Scholar 

  • Balcerzak, M., 1991. Comparative studies on parasitism caused by entomogenous nematodes, Steinernema feltiae and Heterorhabditis bacteriophora. The roles of the nematode-bacterial complex, and of the associated bacteria alone, in pathogenesis. Acta Parasitologica Polonica, 36:175–181.

    Google Scholar 

  • Boemare, N.E., Givaudan, A., Brehelin, M., Laumond, C., 1997. Symbiosis and pathogencity of nematode bacterium complexes. Symbiosis, 22:21–45.

    Google Scholar 

  • Dudney, R.A., 1997. Use of Xenorhabdus Nematophilus Im/l and 1906/1 for Fire Ant Control. US Patent, No. 5616318.

  • Elawad, S.A., 1998. Studies on the Taxonomy and Biology of A Newly Isolated Species of Steinernema (Steinernematidae: Nematoda) from the Tropics and Its Associated Bacteria. Ph. D. Thesis. Department of Agriculture, University of Reading, UK.

    Google Scholar 

  • Elawad, S.A., Gowen, S.R., Hague, N.G.M., 1999. Efficacy of bacterial symbionts from entomopathogenic nematodes against the beet army worm (Spodoptera exigua). Test of Agrochemicals and Cultivars No. 20, Annals of Applied Biology (Supplement), 134: 66–67.

    Google Scholar 

  • Ensign, J.C., Bowen, D.J., Tenor, J.K., Ciche, T.A., Petell, J.K., Strickland, J.A., Orr, G.L., Fatig, R.O., Bintrim, S.B., ffrench-Constant, R.H., 2002. Proteins from the Genus Xenorhabdus are Toxic to Insects on Oral Exposure. US Patent, No. 0147148 A1.

  • ffrench-Constant, R., Bowen, D., 1999. Photorhabdus toxins: novel biological insecticides. Current Opinion in Microbiology, 2:284–288.

    Article  Google Scholar 

  • Forst, S., Nealson, K., 1996. Molecular biology of the symbiotic-pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Review, 60:21–43.

    Google Scholar 

  • Georgis, R., Hague, N.G.M., 1981. A neoplectanid nematode in the web-spinning larch sawfly Cephalcia lariciphila (Hymenoptera: Pamphillidae). Annals of Applied Biology, 99:171–177.

    Article  Google Scholar 

  • Givaudan, A.S., Baghdiguian, S., Lanois, A., Boemare, N., 1995. Swarming and swimming changes concomitant with phase variation in Xenorhabdus nematophilus. Applied Environmental Microbiology, 61:1408–1413.

    Google Scholar 

  • Gotz, P., Boman, A., Boman, H.G., 1981. Interactions between insect immunity and an insect-pathogenic nematode with symbiotic bacteria. Proceedings of Royal Society London, 212:333–350.

    Article  Google Scholar 

  • Harcourt, D.G., 1962. Biology of cabbage caterpillars in eastern Ontario. Proceedings of the Entomological Society Ontario, 93:61–75.

    Google Scholar 

  • Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annual Review of Entomology, 38:181–206.

    Article  Google Scholar 

  • Keinmeesuke, P., Vattanatangum, P., Sarnthoy, O., Sayampol, B., Saito, T., Nakasnji, F., Sinchaisria, N., 1985. Life Table of Diamondback Moth and Its Egg Parasite Trichogrammatiodea bactrae in Thailand. In: Talekar, N.S. (Ed.), Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop, Asian Vegetable Research and Development Center. AVRDC, Tainan, Taiwan, p.309–315.

    Google Scholar 

  • Mahar, A.N., 2003. The Efficacy of Bacteria Isolated from Entomopathogenic Nematodes Against the Diamondback Moth Plutella Xylostella L. (Lepidoptera: Yponomeutidae). Ph.D. Thesis. Department of Agriculture, University of Reading, UK.

    Google Scholar 

  • Morris, O.N., 1985. Susceptibility of 31 species of agricultural insect pests to entomopathogenic nematodes Steinernema feltiae and Heterorhabditis bacteriophora. Canadian Entomologist, 117:401–407.

    Article  Google Scholar 

  • Mracek, Z., Hanzal, R., Kodrik, D., 1988. Sites of penetrations of juveniles Steinernematids and Heterorhabditis (Nematoda) in the larvae of G. mellonella (Lepidoptera). Journal of Invertebrate Pathology, 52:477–482.

    Article  Google Scholar 

  • Poinar, Jr. G.O., 1979. Nematodes for Biological Control of Insects. C.R.C. Press, Boca Raton, Florida.

    Google Scholar 

  • Poinar, Jr.G.O., Thomas, G.M., 1966. Significance of Achromobacter nematophilus Poinar and Thomas (Achromobacteriaceae: Eubacteriales) in the development of the nematode DD-136 (Neoplectanta sp. Steinernematidae). Paraitology, 56:385–390.

    Article  Google Scholar 

  • Ratnasinghe, G., Hague, N.G.M., 1997. Efficacy of Entomopathogenic nematodes against the diamondback moth, Plutella xylotella (Lepidoptera: Yponomeutidae). Pakistan Journal of Nematology, 15:45–53.

    Google Scholar 

  • Sambeek, J., Wiesner, A., 1999. Successful parasitation of locusts by entomopathogenic nematodes is correlated with inhibition of insect phagocytes. Journal of Invertebrate Pathology, 73:154–161.

    Article  Google Scholar 

  • Sun, C.N., Wu, T.K., Chen, J.S., Lee W.T., 1986. Insecticide Resistance in Diamondback Moth. In: Talekar, N.S., Griggs, T.D. (Eds.), Diamondback Moth Management: Proceedings of the First International Workshop, Asian Vegetable Research and Development Center. AVRDC, Shanhua, Taiwan, p.359–371.

    Google Scholar 

  • Tabashink, B.E., Cushing, N.L., Finson, N., Johnson, M.W., 1990. Field development of resistance to Bacillus thuringiensis in Diamondback moth (Lepidoptera: Plutellidea). Journal of Economic Entomology, 83:1671–1676.

    Article  Google Scholar 

  • Webster, J.M., Chen, G., Hu, K., Li, J., 2002. Bacterial Metabolites. In: Gaugler, R. (Ed.), Entomopathogenic Nematology. CAB International, Wallingford, UK, p. 99–114.

    Google Scholar 

  • Woodring, J.L., Kaya, H.K., 1988. Steinernematid and Heterorhabditid Nematodes: A Handbook of Biology and Techniques. Arkansas Experiment Station, Fayetteville, AR, USA, Southern Cooperatives Series Bulletin 331, p.28,

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahar, A.N., Munir, M., Elawad, S. et al. Microbial control of diamondback moth, Plutella xylostella L. (Lepidoptera: Yponomeutidae) using bacteria (Xenorhabdus nematophila) and its metabolites from the entomopathogenic nematode Steinernema carpocapsae . J. Zheijang Univ.-Sci. 5, 1183–1190 (2004). https://doi.org/10.1631/jzus.2004.1183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2004.1183

Key words

Document code

CLC number

Navigation