Skip to main content
Log in

Solving geometric constraints with genetic simulated annealing algorithm

  • Electronics & Information Technology
  • Published:
Journal of Zhejiang University-SCIENCE A Aims and scope Submit manuscript

Abstract

This paper applies genetic simulated annealing algorithm (SAGA) to solving geometric constraint problems. This method makes full use of the advantages of SAGA and can handle under-/over-constraint problems naturally. It has advantages (due to its not being sensitive to the initial values) over the Newton-Raphson method, and its yielding of multiple solutions, is an advantage over other optimal methods for multisolution constraint system. Our experiments have proved the robustness and efficiency of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aldefeld, B., 1988. Variation of geometries based on a geometric-reasoning method.CAD,20(3): 117–126.

    MATH  Google Scholar 

  • Borning, A. H., 1981. The programming language aspects of ThingLab, a constraint oriented simulation laboratory.ACM TOPLAS,3(4): 353–387.

    Article  Google Scholar 

  • Bose, N. K., 1985. Multidimensional Systems Theory. D. Reidel Publishing Co., p. 184–232.

  • Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J. and Paige, J., 1994. A geometric contraint solver,CAD.27: 487–501.

    MATH  Google Scholar 

  • Bruderlin, B., 1990. Symbolic Computer Geometry for Computer Aided Geometric Design.In: Advances in Design and Manufacturing Systems, NSF conference, AZ, USA.

  • Davis, L., 1991. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

    Google Scholar 

  • David, P. and Borut, Z., 2001. A Geometric Constraint Solver With Decomposable Constraint Set. Skala, V. Eds., The 9th International Conference in Central Europe on Computer Graphics and Visualisation' 01-WSCG'01, Plzen, Czech Republic, University of West Bohemia,2: 222–229.

  • De Jong, K., 1975. An Analysis of the Behavior of a Class of Genetic Adaptive Systems. PhD Dissertation, University of Michigan. Dissertation Abstract International, 36(10), 5140B. (University Microlms No. 76-9381).

  • Dennis, J. E. and Schnabel, R. B., 1983. Numerical Methods for Unconstrainted Optimization and Nonlinear Equations. Prentice-Hall Inc., New Jersey.

    MATH  Google Scholar 

  • Durand, C., 1998. Symbolic and Numerical Techniques for Constraint Solving. PhD thesis, Department of Computer Sciences, Purdue University, IN, USA

    Google Scholar 

  • Durand, C. and Hoffmann, C. M., 1999. Variational Constraints in 3D. Proc. Intl Conf on shape Modeling and Appl, Aizu, Japan, p. 90–97.

  • Durand, C. and Hoffmann, C. M., 2000. A systematic framework for solving geometric constraint analytically.J. of Symbolic Computing,30: 483–520.

    Article  MathSciNet  MATH  Google Scholar 

  • Emiris, I.Z. and Verschelde, J., 1997. How to count efficiently all affine roots of a polynomial system. Discrete Applied Mathematics, 93(1).

  • Fudos, I., 1993a. Editable Representations for 2D Geometric Design, Master's Thesis, Purdue University, Dept. of Computer Science.

  • Fudos, I. and Hoffmann, C. M., 1993b. Correctness proof of a geometric constraint solver.Intl. J. Comp Geometry and Applic,6: 405–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Fudos, I. and Hoffmann, C. M., 1997. A graph-constructive approach to solving systems of geometric constraints.ACM Transactions on Graphics,16: 179–216.

    Article  Google Scholar 

  • Ge, J. X., Gao, X. S. and Chou, S. C., 2000. Geometric constraint satifaction using optimization methods.Computer Aided Design,31: 867–879.

    Article  MATH  Google Scholar 

  • Goldberg, D. E., 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley Publishing Company, New York, p. 1–88.

    Google Scholar 

  • Hoffmann, C. M. and Vermeer, P., 1995a. Geometric Constraint Solving in R2 and R3.In: Computing in Eulidean Geometry Second Edition. World Scientific Publishing, Singapore, p. 266–298.

    Chapter  Google Scholar 

  • Hoffmann, C. M. and Vermeer, P., 1995b. A Spatial Constraint Problem.In: Computational Kenematics's 95, J. P. Merlet and B. Ravani, Eds., Kluwer Academic Publ., p. 83–92.

  • Hoffmann, C. M. and Joan-arinyo, R., 1997. Symbolic constraints in constructive geometry.Journal of Symbolic Computation,23: 287–300.

    Article  MathSciNet  MATH  Google Scholar 

  • Hoffmann, C. M. and Yuan, B., 2000. On Spatial Constraint Solving Approaches. Proc. ADG 2000, Springer verlag, ETH, Zurich.

    MATH  Google Scholar 

  • Ivan, S. E., 1963. Sketchpad: A Man-Machine Graphical Communication System.In: Proceedings-Spring Joint Computer Conference, Michigan,23: 329–346.

  • Joan-Arinyo, R. and Soto, A., 1997a. A correct rule-based geometric constraint solver.Computer and Graphics,21 (5): 599–609.

    Article  Google Scholar 

  • Joan-Arinyo, R. and Soto, A., 1997b. A Ruler-and-Compass Geometric Constraint Solver.In: M. J., Pratt, R. D., Sriram and M. J., Wozny, editors, Product Modeling for Computer Integrated Design and Manufacture, Chapman and Hall, London, p. 384–393.

    Chapter  Google Scholar 

  • Kondo, K., 1992. Algebraic method for manipulation of dimensional relationships in geometric models.CAD,24 (3): 141–147.

    MATH  Google Scholar 

  • Kirkpatrick, S., Gelatt Jr., C. D. and Vecchi, M. P., 1983. Optimization by simulated annealing.Science,220: 671–680.

    Article  MathSciNet  MATH  Google Scholar 

  • Lazard, D., 1999. On theories of triangular sets.Journal of Symbolic Computation,28: 105–124.

    Article  MathSciNet  MATH  Google Scholar 

  • Michalewicz, Z., Krawczyk, J., Kazemi, M. and Janikow, C., 1990. Genetic Algorithms and Optimal Control Problem.In: Proc. of 29th IEEE Conf. On Decision and Control, p. 1664–1666.

  • Morgan, A., 1992. Polynomail Continuation and its Relationship to the Symbolic Reduction of Polynomial Systems.In: B. Donal, D. Kapur, and J. Mundy, editors, Symbolic and Numerical Computation for Artificial Inteligence. Academic Press.

  • Song, P., Tang, M. and Dong, J. X., 2000. A Constraint Solving Approach Based on Graph Decomposition. China Graph'2000, Hangzhou.

  • Sturmfels, B., 1997. Introduction to Resultants. Lecture Notes at the AMS Short Course on Applications of Computational Algebraic Geometry, San Diego.

  • Verroust, A., Schonek, F. and Roller, D., 1992. Ruleoriented method for parametrized computer-aided design.Computer Aided Design,24(10): 531–540

    Article  MATH  Google Scholar 

  • Wang, D., 1998. Decomposing polynomial systems into simple systems.Journal of Symbolic Computation,25: 295–314.

    Article  MathSciNet  MATH  Google Scholar 

  • Wu, W. T., 1986. Principles of mechanical theorem proving.J. of Automated Reasoning,2: 221–252.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Project (No. 6001107) supported by the National Science Foundation of Zhejiang Province

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheng-Li, L., Min, T. & Jin-Xiang, D. Solving geometric constraints with genetic simulated annealing algorithm. J. Zhejiang Univ. Sci. A 4, 532–541 (2003). https://doi.org/10.1631/jzus.2003.0532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/jzus.2003.0532

Key words

Documents code

CLC number

Navigation